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Abstract. Histopathological region segmentation faces two main chal-
lenges: catastrophic forgetting and the high cost of pixel-level annota-
tions. Recent studies have focused on incremental learning of new cat-
egories using low-cost image-level labels. However, the limitations of
multiple instance learning (MIL) in modeling instance relationships hin-
der further improvement in segmentation performance. To address these
challenges, we propose the Dual-branch Dynamic Coupling (DDCWISS)
network for weakly supervised class-incremental learning in histopatho-
logical region segmentation. Our architecture overcomes the limitations
of isolated local feature computation in traditional MIL by enabling
complementary feature extraction through parallel local representation
and global modeling branches. Additionally, we propose a learnable cou-
pling module to ensure effective multi-scale feature fusion, while the
dual-path supervision mechanism simultaneously enhances segmentation
accuracy. Experiments on the CPATH dataset demonstrate that our
method significantly reduces reliance on costly pixel-level annotations
for histopathological region segmentation, while effectively alleviating
the catastrophic forgetting problem during incremental learning. These
results highlight the potential of DDCWISS as a scalable, weakly super-
vised Class-Incremental paradigm for medical image analysis. The source
code is publicly available at: https://github.com/XiaoyanHong24/DDCWISS.

Keywords: Incremental Learning · Histopathological region segmenta-
tion · Weakly supervised learning.

1 Introduction

Histopathological images are critical for cancer diagnosis. While intelligent mod-
els trained on public datasets have made notable progress, current methods face
two fundamental limitations[18]. First, they lack mechanisms for continual learn-
ing. As cancer progresses, diagnosis requires finer-grained distinctions between
tissue types—such as lymphatic infiltration or vascular invasion—that existing
fixed-category models struggle to identify. Second, re-annotating entire slides
and retraining from scratch is resource-intensive. Pixel-level labeling is espe-
cially costly given the complexity and variability of cellular structures. Moreover,
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focusing solely on new classes often leads to forgetting of previously learned cat-
egories, undermining clinical applicability. A joint incremental learning strategy
is thus essential to balance knowledge retention and acquisition[15]. To address
these challenges, two primary approaches have emerged. Incremental learning
extends the model’s capacity to recognize new classes while preserving knowl-
edge of old ones, thereby reducing catastrophic forgetting. In parallel, weakly
supervised methods—especially multiple instance learning (MIL)—aim to min-
imize annotation cost by using image-level labels, which are cheaper and more
scalable[10]. In MIL-based frameworks, images are divided into patches (bags),
with pixels treated as instances. The model learns how pixel-level patterns re-
spond to patch-level labels, effectively reframing weakly supervised segmentation
as an MIL task in settings without pixel-wise annotations.

However, traditional MIL assumes that instances (i.e., patches) are indepen-
dent, introducing two major limitations. First, it ignores contextual relationships
between patches. In histopathology, tumor and stroma often share similar tex-
tures, and without semantic context, the model can confuse ambiguous stroma
with tumor, leading to false positives. Second, convolutional networks’ limited
receptive fields hinder the modeling of long-range spatial dependencies—key for
understanding complex tissue architecture—thus constraining the model’s global
representational capacity. Recently, Wilson introduced the task of Weakly Su-
pervised Incremental Learning for Semantic Segmentation (WISS) [2], which
aims to update models progressively using only image-level labels to incorporate
new classes. While centralized region-based features often suffice for semantic
segmentation in natural images—where object boundaries are clear—this as-
sumption does not hold in histopathology. In histopathological images, diagno-
sis depends on contextual and spatial relationships across multiple regions. For
instance, tumor tissues are often discontinuous and require joint interpretation
of surrounding stroma, necrosis, and lymphatic areas. In incremental learning,
relying solely on localized predictions overlooks such dependencies and disrupts
the feature space, worsening catastrophic forgetting as new information over-
writes prior knowledge. Therefore, conventional centralized prediction strategies
are ill-suited for histopathological segmentation. In this work, we emphasize the
need to address both incremental model updating and annotation cost reduction
in this challenging domain.

Based on the above, we propose the Dual-Branch Dynamic Coupling Net-
work (DDCWISS), which combines local feature perception with global context
modeling for accurate histopathological region segmentation. The architecture
includes three core components: the Dual-Branch Feature Extraction (DBE)
module, the Dynamic Feature Coupler (DFC) module, and a dual-path super-
vision mechanism. The DBE module addresses challenges such as catastrophic
forgetting and multi-scale variation by using two parallel branches. The local
representation branch improves key region recognition via an enhanced MIL
mechanism[9], while the global modeling branch employs a vision Transformer to
capture cross-region dependencies through adaptive weight allocation. To bridge
the semantic gap caused by differences in receptive field and feature granularity,



DDCWISS 3

we introduce the DFC module. It uses 1×1 convolutions and learnable param-
eters to adaptively preserve relevant features, enabling efficient fusion of local
and global information. To overcome limited pixel-level supervision, we integrate
image-level labels with dynamically generated pseudo-labels in a dual-path su-
pervision scheme. In the pseudo-labeling path, a distillation module converts
image-level labels into supervisory signals to guide classification. In the opti-
mization path, the segmentation backbone is refined using pixel-level consistency
loss and pseudo-supervision, improving both feature quality and segmentation
accuracy.

2 Method

Fig. 1. Overview of the proposed Dual-branch Dynamic Coupling Weakly Supervised
Continual Learning.

Our proposed model architecture, as depicted in Fig. 1, operates on input
images from the space X. Each image x ∈ X consists of a pixel set P , with
cardinality |P | = H × W , corresponding to the image’s height and width di-
mensions. The label space Y expands through a multi-phase training protocol,
typical of semantic segmentation in class-incremental learning. Specifically, at
training stage t, the system incorporates novel classes St along with pixel-level
annotations, progressively constructing an updated label set Yt = Yt−1 ∪ St.
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2.1 Dual-Branch Feature Extraction with Dynamic Coupling

In contrast to the traditional class-incremental learning setup, the recently pro-
posed WISS introduces a novel approach. In this setting, pixel-level annotations
are only available during the initial training phase[3]. For subsequent steps, the
training datasets consist solely of image-level annotations for the new classes,
and previously used training samples are no longer accessible. The primary goal
of this framework is to update and refine the model to segment newly introduced
classes while preserving the knowledge of previously learned classes, thereby mit-
igating catastrophic forgetting.

Our mapping is realized by a model F = ϕd ◦ ϕe : X 7→ RN×|Y |, e and d
denote the encoder and decoder of the segmentation network, respectively. The
DBE module proposed in this paper consists of two components: local represen-
tation and global modeling. The local representation is denoted as Flocal, while
the global modeling is denoted as Fglobal. The local representation extends MIL.
By utilizing image-level annotations, we transform the multi-instance learning
problem, typically associated with bag-level labels, into a histopathological seg-
mentation problem. By treating each pixel as an instance, our model effectively
learns both the spatial and semantic information of the histopathological images,
leading to more precise pixel-level predictions[11].

In the global modeling module, we employ a sliding window technique to
extract global features from histopathological images. This module compensates
for the missing global context in the local feature representations by aggregating
information from broader regions of the image. The sliding window extracts
overlapping local patches, which are subsequently used to capture cross-regional
dependencies and long-range semantic relationships. The dual-branch features
are fused through our DFC module, as shown below:

Ffused = Φ(α · G(Flocal), β · H(Fglobal)), (1)

where α ∈ [0, 1] and β ∈ [0, 1] represent the adaptive coupling coefficients,
G(·) and H(·) denote the size alignment (upsampling) operations performed on
the dual-branch features before fusion, and Φ represents the DFC module. The
fusion process ensures alignment between the local and global representations
while maintaining the consistency of the feature space.

2.2 Dual-path supervision mechanism

We introduce a distillation module trained using image-level annotations to gen-
erate pseudo-supervision signals for the segmentation model. This distiller uti-
lizes the fused feature Ffused to predict class scores. To learn from image-level
annotations, it is necessary to aggregate the pixel-level classification scores z. A
commonly used approach for this is global average pooling, which assigns weights
to each pixel based on its relevance to the target class[1], as expressed by the
following formula:

ŷ =
∑
i∈P

ϕ(zi)zi
ϵ+ ui

+R(ui, γ, λ) (2)
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where the regularization term R(ui, γ, λ) is defined as:

R(ui, γ, λ) =

(
1− ui

|P |

)γ

log

(
λ+

ui

|P |

)
, (3)

where zi represents the classification score for pixel i, and the weight of each
pixel ϕ(zi) is calculated by normalizing the classification scores using the softmax
operation ϕ. The relevance score ui for pixel i is computed as ui =

∑
i∈P ϕ(zi),

where ui is a mask indicating the relevance of the pixel. ϵ is a small constant, γ
and λ are hyper-parameters.

LMSM (ŷ, y) = −
∑
s∈St

yslog(ŷs) + (1− ys)log(1− ŷs) (4)

where ys denotes the image-level label. Considering the nature of multi-label
segmentation tasks, we incorporate image-level labels to guide the supervision
of the model’s outputs. Specifically, for each input image xn ∈ Xt, we compute
the generalized mean of the decoder’s output, which aggregates the pixel-level
predictions across the entire image. This generalized mean is calculated as fol-
lows:

Ĥn =

(
1

|xn|
∑
i∈P

zri

) 1
r

, (5)

where |xn| is the total number of pixels in the image xn, and r is a hyperparam-
eter that controls the influence of individual pixel probabilities in the computa-
tion. When r = 1, it equals the average, treating all pixels equally; when r > 1,
high-confidence pixels have more influence while low-confidence ones are down-
weighted. As r approaches infinity, only the most confident pixel dominates,
improving the model’s focus on salient regions under image-level supervision.
The loss function for the output and image-level labels is then formulated using
the LFCLS loss, which can be written as:

LFCLS(ĥ, y) = −
∑
n∈X

∑
s∈S

[
ys log(ĥs

n) + (1− ys) log(1− ĥs
n)
]
, (6)

where ĥs
n is the image-level class probability prediction obtained from equation

(5), and ys is the corresponding ground truth label for class s. In the class-
incremental learning framework, the WISS system utilizes a progressive knowl-
edge integration mechanism[17]. This framework assumes that new categories are
only accompanied by image-level label data (y), and under this constraint, the
distillation component trains the model by optimizing a multi-class margin loss
function. Since global annotations only indicate the presence of categories and
lack pixel-level localization details, the proposed model, DDCWISS, leverages
spatial prior knowledge embedded in historical segmentation models.

Specifically, the background confidence map is generated by the model from
the previous stage t − 1, containing predictions only for the old classes. After
new classes are introduced in the current stage t, the old classes are treated as



6 X. Hong et al.

relative background. This map is used during the boundary refinement phase to
provide saliency-guided pseudo-labels for the current model, thereby improving
the accuracy of boundary recognition between old and new classes. Our dual-
guidance mechanism effectively directs the model’s attention to potential regions
for new categories. To accomplish this, DDCWISS incorporates the segmenta-
tion output from the previous iteration, applies the sigmoid activation function,
and uses the classification scores z as supervisory signals. This cross-iteration
collaborative training mechanism ultimately leads to the following optimization
objective:

LDIS(z, u) = −
∑
i∈P

∑
s∈Y t−1

us
i log(σ(z

s
i )) + (1− ωs

i ) log(1− σ(zsi )), (7)

where us
i = σ(f t−1(x)) is the output from the previous iteration, processed by the

sigmoid function, indicating the confidence of the previous model’s prediction for
pixel pi belonging to class s. zsi represents the classification score for pixel pi and
class s from the distillation component. Existing studies have shown that pseudo-
supervision signals generated by global image classifiers contain significant noise,
which can easily cause learning bias in the model. To address this, we have
developed a dynamic label correction mechanism [13], redefining the pixel-level
pseudo-supervision signal ẑ as follows:

ẑs = min (us, bs) · 1{s=b} + bs · 1{s∈St} + us · 1{s/∈{b}∪St}, (8)

where us from equation 7 represents the output of the model at stage t− 1, and
bs = α · I

[
s = argmaxk∈Yt

mk
i

]
+ (1−α)ms, with m = σ(f t−1(x)) generating a

one-hot distribution for each pixel; the pixel’s highest score assigns it to a class
while smoothing the pseudo-labels to reduce noise. The key issue lies in the min-
imal value fusion of the two probability distributions. This method effectively
addresses the background distribution shift in scene transfer by constructing a
dynamic confidence interval for the background class. Since the weakly super-
vised signal bs does not conform to the normalization constraints of a probability
distribution, conventional cross-entropy loss is not directly applicable. Therefore,
we adopt a multi-label soft margin loss function to optimize the model:

LSEG(v, ẑ) = −
∑
i∈P

∑
s∈St

[ẑsi log(v
s
i ) + (1− ẑsi ) log (1− σ(vsi ))] , (9)

where P denotes the set of all pixels in the image, St is the set of classes in
task-t, and v = gt(x) is the pixel-level probability output of the current model
iteration.

3 Experiments

3.1 Datasets and Protocols

We evaluated DDCWISS on multiple datasets, including BCSS [14], LUAD-
HistoSeg [6], WSSS4LUAD [7], and a combined histopathological slide dataset
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(CPATH) assembled from three sources. Following the standard approach of
Augmentor, we divide the WSI images into patches of size 512 × 512 for sub-
sequent prediction tasks. The integrated dataset comprises 19,944 images, with
15,956 used for training, 3,988 for validation, and 3,988 for testing. Five tissue
categories are annotated: 0 represents the background region of the pathological
slide, 1 denotes tumor tissue, 2 denotes stromal tissue, 3 denotes normal tissue,
4 denotes necrotic tissue, and 5 denotes lymphatic tissue. Prior work [16] pro-
posed two distinct incremental learning protocols: disjoint and overlapping. In
the disjoint scenario, each training step contains only pixels from previously en-
countered classes and those from the current phase. In contrast, the overlapping
protocol includes all images at every training step, with pixels potentially be-
longing to any class. As a result, the overlapping protocol is both more realistic
and challenging. In our experiments, we applied these protocols on the CPATH
dataset, referred to as cpath 3-2, where three base classes are learned in the first
phase, and two new classes are introduced in the subsequent phase.

3.2 Implementation Details

Our framework was implemented in PyTorch and trained on an A6000 GPU. We
employed Deeplab V3[4] as the decoder backbone, while the encoder was built on
ResNet-101[8] and the Swin Transformer[12], both pre-trained on ImageNet[5].
The Adam optimizer was used with a learning rate of 0.01, momentum param-
eters of 0.9 and 0.999 for the first and second moment estimates, respectively,
and a weight decay of 1× 10−8.

Table 1. Quantitative Comparison of different methods. Sup indicates supervision
type: P = pixel-level, I = image-level. Joint denotes non-incremental learning, where
all classes are learned at once (upper bound). FT (Fine-Tuning) means training new
tasks without incremental strategies, prone to catastrophic forgetting (lower bound).
Evaluation metric: mean Intersection over Union (mIoU), averaged over all classes
within each task.

Method Sup Overlap Disjoint
1-3 4-5 All 1-3 4-5 All

Joint P 65.88 56.21 60.06 65.07 60.03 61.13
FT P 30.31 5.15 11.43 31.76 9.82 12.83
WILSON[3] I 53.76 27.98 41.22 56.10 32.44 44.20
DDCWISS(Ours) I 60.50 43.25 43.06 50.66 44.47 46.48

3.3 Comparison With Existing Methods

Since WISS is a novel framework introduced by WILSON, we compare our ap-
proach with current representative methods in supervised incremental learn-
ing and weakly supervised semantic segmentation. As shown in Table 1, our
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DDCWISS outperforms methods based on image-level labels, achieving optimal
performance, and even surpasses methods using pixel-level labels in some cases.
Specifically, compared to pixel-level label methods, our overall performance on
the Disjoint protocol reached 46.48%. On the Overlapping protocol, we achieved
43.06% overall performance. Compared to image-level label methods, our DD-
CWISS achieved the best results across all protocols, demonstrating an overall
improvement in performance.

Under the overlap strategy, the WILSON method achieves mIoU scores of
81.28%, 63.51%, and 38.34% for the three classes in Task 1. However, after
introducing new classes in Task 2, its performance declines to 75.29%, 51.38%,
30.48%, 23.64%, and 32.33%. In contrast, our method achieves mIoUs of 80.35%,
60.83%, and 31.59% in Task 1, and 76.49%, 50.78%, 20.09%, 16.03%, and 47.78%
in Task 2. Compared to WILSON, our method exhibits greater resistance to for-
getting on old classes such as tumor and stroma, and demonstrates improved
learning ability on new classes, particularly lymphatic tissue. These results indi-
cate that our approach achieves superior overall performance in both knowledge
retention and integration of new class information.

Table 2. Ablation study of three component modules

DBE DFC LFCLS
Overlap Disjoint

1-3 4-5 All 1-3 4-5 All
53.76 27.98 41.22 56.10 32.44 44.20

✓ ✓ 51.33 31.91 42.03 50.21 39.45 46.31
✓ ✓ ✓ 60.50 43.25 43.06 50.66 44.47 46.48

3.4 Ablation Studies

We conducted a systematic ablation study on the CPATH dataset to assess the
performance gains of the core components through comparative experiments.
The baseline model follows the incremental learning framework proposed in WIL-
SON, with results shown in Table 2. First, by introducing the DBE and DFC to
replace the original single-branch feature encoder, the mIoU score improved by
1.46%. We hypothesize that the dual-branch architecture enables fine-grained
feature representation by decoupling the feature space, while the global-local
feature interaction mechanism effectively captures cross-level feature represen-
tations in pathological images. The dual-path supervision strategy provided a
further 0.6% improvement by jointly optimizing image-level labels and pixel-level
predictions, leveraging the hierarchical complementarity of supervisory signals
to refine the segmentation results.
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4 Conclusion

We propose a novel Dual-Branch Dynamic Coupling Network (DDCWISS) to ad-
dress the challenges of catastrophic forgetting and the reliance on pixel-level an-
notations in histopathological region segmentation. Experiments on the CPATH
dataset demonstrate that DDCWISS significantly reduces the dependence on
pixel-level annotations and effectively alleviates the forgetting problem during
incremental updates, showcasing its potential for practical applications in med-
ical image analysis.
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