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Abstract. Accurate anomaly detection in brain MRI is critical for early
disease diagnosis, yet existing single-sequence reconstruction methods of-
ten fail to distinguish pathological anomalies from both normal anatom-
ical variations and multi-sequence contrast discrepancies. We propose
MultiTransAD, a novel framework that leverages inter-sequence contrast
differences as primary biomarkers for unsupervised anomaly detection.
Our approach introduces: (1) a disentangled architecture with anatom-
ical edge constraints to decouple sequence-invariant anatomy from se-
quence features, (2) cross-sequence translation error analysis for direct
anomaly quantification, and (3) dual-level anomaly detection combining
pixel-level errors and patch-level feature dissimilarities. Evaluated on
BraTS 2021, MultiTransAD achieves state-of-the-art performance with
Dice scores of 0.6334 (14.2% improvement over reconstruction baselines)
and AUROC of 0.9722, validating the effectiveness of multi-sequence
contrast analysis in anomaly detection while establishing a extensible
cross-sequence translation paradigm. The code is publicly available at:
https://github.com/zhibaishouheilab/MT-AD

Keywords: Anomaly Detection · Multi-sequence MRI · Cross-sequence
Translation · Self-supervised Learning.

1 Introduction

Early diagnosis of neurological disorders critically depends on precise anomaly
detection in brain MRI. While supervised learning methods require labor-intensive
lesion annotations that are prone to inter-observer variability, unsupervised ano-
maly detection (UAD) formulates the task as one-class classification (OCC) us-
ing only healthy data for training [2,9]. Reconstruction-based methods, such
as autoencoders (AEs) and generative adversarial networks (GANs), identify
anomalies in areas with high reconstruction errors. However, these methods suf-
fer from three limitations: (1) elevated reconstruction errors in normal regions
due to anatomical complexity (false positives) [13,5], (2) overfitting to pathology
representation enabling perfect anomaly reconstruction (false negatives) [3], and
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(3) underutilization of multi-sequence contrast information decreasing detection
sensitivity.

Multi-sequence MRI analysis is standard in clinical practice, as pathological
tissues exhibit distinct intensity profiles across sequences[4]. Recent advances
in cyclic-translation frameworks[12,6] aim to mitigate anatomical variability by
learning bidirectional mappings between sequences (e.g., T2 to FLAIR and vice
versa). These methods train on paired healthy sequences to reconstruct a source
image through a cyclic translation, hypothesizing that anomalies will exhibit
high errors due to inconsistent translations. However, these methods may intro-
duce new issues that incomplete disentanglement of anatomical and sequence
features propagates pathologies during translation, which may lead to false pos-
itives. Furthermore, testing remains single-sequence inputs, lacking the direct
utilization of inter-sequence contrasts.

To address these challenges, we propose MultiTransAD, a cross-sequence
translation framework that directly utilizes inherent contrast discrepancies as
primary anomaly biomarkers. Our contributions are threefold: (1) Redefinition
of anomaly detection through cross-sequence translation error analysis, instead
of secondary features from single-sequence reconstruction; (2) A disentangled
architecture with anatomical edge constraints that explicitly separates sequence-
invariant anatomy from sequence-specific features, preventing contamination by
anomalies; (3) A dual-level evaluation combining pixel-level translation errors
and patch-level feature dissimilarities, enhancing detection sensitivity greatly.

2 Methodology

2.1 Architecture Overview

MultiTransAD processes K MRI sequences {ISk
}Kk=1 through three key stages:

(1) Disentangled translation from source sequence Ss image ISs
to tar-

get sequence St image ISt
via content-style feature disentanglement and edge-

constrained fusion; (2) Feature dissimilarity map extracting patch-level dis-
similarities between source content Zc

Ss
and target content Zc

St
; (3) Anomaly

detection combining pixel-level translation errors Apixel
Ss→St

with patch-level fea-
ture dissimilarities Afeature

Ss↔St
to generate the final anomaly map ASs→St . The

training and anomaly detection workflows are illustrated in Figure 1 and Fig-
ure 2, respectively.

2.2 Sequence-Agnostic Feature Disentanglement

The source image ISs
is decomposed (via image patching ϕpatch) into N = HW

p2

patches (p is patch size), each projected to dimension d:

Zpatch
Ss

= ϕpatch(ISs
) ∈ RN×d (1)

A content encoder Ec with 12 ViT layers extracts sequence-invariant anatom-
ical features:
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Fig. 1: Illustration of the MultiTransAD architecture. MultiTransAD leverages
paired MR sequences during training and inference. Translated images integrate
source content with target style.

Zc
Ss

= Ec(Z
patch
Ss

) ∈ RN×d (2)

For style encoding of target sequence, style encoder Es, which shares Ec’s
architecture, outputs sequence-specific statistics through parallel 1× 1 convolu-
tional heads ϕµ and ϕσ:

µs
St
, σs

St
=

[
AvgPool(ϕµ(Z

patch
St

)),AvgPool(ϕσ(Z
patch
St

))
]
∈ Rd (3)

2.3 Edge-Constrained Anatomical Preservation

The Anatomical Edge Constraint Module (AECM) uses dual-threshold gradient
clipping to preserve structural boundaries and suppress noises:

GradSt = Clip(Sobel(ISt), q50(∇ISt), q95(∇ISt)) (4)

where q50 and q95 represent the 50th/95th percentile of gradient magnitudes.
Sobel indicates Sobel operator. Edge-aware features are encoded with the edge
projection ϕedge

patch:

Zedge
St

= ϕedge
patch(GradSt

) ∈ RN×d (5)

2.4 Adaptive Cross-sequence Fusion

The adaptive fusion module combines content, edge, and style through:
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1. Style Adaptation: Applies Adaptive Instance Normalization (AdaIN) [7]
to style and content features:

Zada
Ss→St

= σs
St

·
Zc

Ss
− µ(Zc

Ss
)

σ(Zc
Ss
)

+ µs
St

(6)

2. Edge Fusion: Concatenates target edge features and fused features, fol-
lowed by dimension reduction:

Zfusion
Ss→St

= Conv1×1([Z
ada
Ss→St

⊕ Zedge
St

]) ∈ RN×d (7)

A generator G with 8 ViT layers reconstructs the target image:

ÎSs→St
= G(Zfusion

Ss→St
) (8)

2.5 Objective Functions

Training minimizes translation fidelity and cross-sequence consistency:
1. Translation Loss (L1 Loss): Enforces pixel accuracy:

Ltrans =
1

K(K − 1)

∑
Ss ̸=St

∥ISt
− ÎSs→St

∥1 (9)

2. Cross-Sequence Contrastive Alignment Loss (CSCAL): Promotes
anatomical consistency via patch-level content feature contrastive loss. Specifi-
cally, for a given patch index i, the positive sample pair is (zcSs,i

, zcSt,i
) and the

negative sample pairs are (zcSs,i
, zcSt,j

) where i ̸= j. The loss function is defined
as:

LCSCAL = − 1

K(K − 1)N

∑
Ss ̸=St

N∑
i=1

log
es(z

c
Ss,i,z

c
St,i

)/τ∑N
j=1 e

s(zc
Ss,i,z

c
St,j

)/τ
(10)

where s(a,b) = a⊤b/∥a∥∥b∥ and τ = 0.1.
The total loss combines these objectives with balancing factor α = 0.01:

Ltotal = Ltrans + αLCSCAL (11)

2.6 Anomaly Quantification

The anomaly quantification workflow is illustrated in Figure 2. For each sequence
pair (Ss, St), the anomaly score map ASs→St :

Pixel Error Map Quantifies pixel-level absolute translation errors:

Apixel
Ss→St

(x, y) = ∥ISt(x, y)− ÎSs→St(x, y)∥1 (12)

Feature Dissimilarity Map Evaluates cross-sequence content feature align-
ment. Given Zc

Ss
,Zc

St
∈ RN×d, compute cosine similarity S(m) =

zc
Ss,m⊤zc

St,m

∥zc
Ss,m∥∥zc

St,m
∥
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Fig. 2: Anomaly detection combines translation error maps with the feature dis-
similarity map.

for each patch m. Reshape S ∈ RN×1 into a 2D grid and upsample to H×W , then
normalize to Sfeature

Ss↔St
∈ [0, 1]H×W . The feature dissimilarity map is: Afeature

Ss↔St
=

1− Sfeature
Ss↔St

.
Final Anomaly Map Combines pixel and feature anomalies via pixel-wise

product:
ASs→St = Apixel

Ss→St
⊙Afeature

Ss↔St
(13)

3 Experiments and Results

3.1 Datasets and Implementation

The framework was evaluated on the BraTS 2021 dataset [1], a public multi-
sequence brain tumor MRI dataset with 1,251 subjects, each having T1, T2,
T1ce, and FLAIR sequences. Data were split 4:1 into training and test sets. For
training reconstruction-based methods, healthy T2 scans from 581 IXI dataset
subjects [15] were used. Preprocessing included skull stripping, registration, and
normalization to [0,1]. For each 3D image in BraTS 2021 and IXI, 2D slices
50-110 were extracted, center-cropped to 200×200, and resized to 256×256. To
ensure a fair training and evaluation setup, we also extracted all normal slices
(without tumor) from the BraTS 2021 training set, forming the BraTS 2021normal
subset. This subset mitigates domain shifts between training and test sets and
excludes pathological data from the BraTS 2021 training set.

3.2 Model Configuration and Comparison Methods

Input images were resized to 256 × 256 and divided into 16 × 16 non-overlapping
patches with 128-d embeddings, reduced to 64-d after fusion. Predictions were
scaled to [0,1] via Sigmoid activation function. Training lasted 50 epochs with
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data augmentation (random flipping, rotation, contrast/intensity/sharpness ad-
justments). An initial learning rate of 3e−3 was set, decreased by 0.1 every 10
epochs. The Adam optimizer was used with batch size 8. All experiments were
conducted on an NVIDIA 4090 GPU with 24GB of memory. During each itera-
tion, each sample generates 12 cross-sequence pairs through systematic source-
target permutation (C3

4 × 2 = 12 for 4 sequences).
For comparison, we chose reconstruction-based and translation-based meth-

ods. Reconstruction-based UAD baselines included VAE [10], DAE [8], VAEGAN
[11], f-AnoGAN [14], and AnoDDPM [16]. For cyclic translation, Cyclic-UNet
[12] was used, employing dual U-Nets for sequence translation cycles. Anoma-
lies were detected via cyclic error ∥x − x̂∥. All baselines report results for their
optimal sequences and we think that’s a fair comparison.

3.3 Post-Processing and Evaluation

Post-processing on anomaly score maps involved median filtering (kernel size 6)
and thresholding of anomaly maps, discarding components <55 pixels. These are
common steps to mitigate noises. In terms of evaluation, we calculated set-level
metrics for the test set, including the Dice coefficient, AUROC (Area Under
the Receiver Operating Characteristic Curve), and AUPRC (Area Under the
Precision - Recall Curve). The threshold maximizing Dice was selected from 100
candidates spanning the anomaly score range.

3.4 Results and Discussion

Quantitative Performance Analysis As shown in Table 1, MultiTransAD
using T1ce→FLAIR achieves state-of-the-art performance with Dice scores of
0.5080/0.6334 and AUROC of 0.9517/0.9722 when trained on BraTS 2021 and
BraTS 2021normal, respectively. This represents 7.3% (0.5080 vs 0.4734) and
14.2% (0.6334 vs 0.5548) improvement in Dice over the best reconstruction-
based methods (AnoDDPM and DAE). The framework’s clinical relevance is
further validated by its superior AUPRC (0.5558). Besides, T1→FLAIR achieved
competitive performance (the second highest Dice and AUROC), confirming
architectural robustness.

Cyclic UNet (FLAIR-T2-FLAIR) achieved the highest AUPRC of 0.5559
when trained on BraTS 2021normal. However, its Dice (0.4966) is obviously lower
than VAEGAN, DAE, AnoDDPM, and ours. Furthermore, its Dice scores de-
creased from 0.4537/0.4966 to 0.3203/0.3646 when adopting T2-FLAIR-T2, re-
vealing critical instability. The failure may stem from exclusive reliance on pixel-
level cycle consistency failing to capture cross-sequence feature relationships.
While MultiTransAD directly utilizes the cross-sequence contrast in both pixel
and feature level, reducing the false negatives in anomaly regions.

Ablation Study Table 2 quantifies the contributions of each component: (1)
Cross-sequence contrastive alignment (LCSCAL) contributes 8.4% (T1ce →
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Table 1: Model comparison results on BraTS 2021 test set.

Method IXI/BraTS(train) BraTS 2021normal(train)
Dice↑ AUROC↑ AUPRC↑ Dice↑ AUROC↑ AUPRC↑

R
ec

on
.

VAE[10] 0.3602 0.9147 0.2561 0.4176 0.9266 0.3057
DAE[8] 0.3890 0.8896 0.3064 0.5548 0.9538 0.5531
VAEGAN[11] 0.4647 0.9339 0.3595 0.5248 0.9464 0.4616
f-AnoGAN[14] 0.4262 0.9190 0.3510 0.4509 0.9263 0.3571
AnoDDPM[16] 0.4734 0.9321 0.4308 0.5512 0.9491 0.5268

T
ra

n
s.

Cyclic[12](FL-T2-FL) 0.4537 0.9287 0.3566 0.4966 0.9449 0.5559
Cyclic[12](T2-FL-T2) 0.3203 0.8710 0.3167 0.3646 0.9166 0.3252
Ours(T1→FL) 0.5075 0.9509 0.3929 0.6027 0.9660 0.5169
Ours(T1ce→FL) 0.5080 0.9517 0.4022 0.6334 0.9722 0.5558

Recon. means Reconstruction-based methods and Trans. means Translation-
based. Methods are trained on two datasets. IXI/BraTS: Reconstruction-
based methods are trained on IXI T2 and Translation-based methods are
trained on BraTS 2021 training set. BraTS 2021normal: All methods are
trained on BraTS 2021normal. Bold values indicate the best performance and
underlined indicates the second best. FL indicates FLAIR.

FLAIR ) and 7.6% (T1 → FLAIR) Dice improvements (row 4 vs 2), val-
idating its critical role in suppressing normal anatomical variations; (2) The
AECM enhances detection precision with 8.9%/4.4% AUPRC gains (row 2 vs
1) for respective pathways through edge-constrained boundary preservation;
(3) Feature dissimilarity integration provides 16.5%/14.3% Dice improvements
and 19.9%/16.8% AUPRC improvements (row 4 vs 3) by capturing anatom-
ical anomalies undetectable through pixel-level analysis alone. These findings
demonstrate two fundamental advantages: (i) The CSCAL-AECM synergy en-
sures robust anatomical consistency across sequences; (ii) Dual-level (pixel and
feature) anomaly mapping provides complementary detection sensitivity, that
pixel errors quantify intensity deviations while feature dissimilarities identify
abnormal patterns.

Table 2: Ablation study (train and test both on BraTS 2021).
Module T1ce→FLAIR T1→FLAIR

LCSCAL AECM Afeature
Ss↔St

Dice↑ AUROC↑ AUPRC↑ Dice↑ AUROC↑ AUPRC↑
× × ✓ 0.4409 0.9213 0.3242 0.4508 0.9219 0.3369
× ✓ ✓ 0.4685 0.9474 0.3529 0.4714 0.9462 0.3518
✓ ✓ × 0.4357 0.9350 0.3355 0.4439 0.9371 0.3364
✓ ✓ ✓ 0.5080 0.9517 0.4022 0.5075 0.9509 0.3929

Bold values indicate the best performance. LCSCAL: Cross-sequence contrastive
alignment loss. AECM: Anatomical Edge Constraint Module. Afeature

Ss↔St
: Feature

dissimilarity map.
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Qualitative Evaluation Figure 3 illustrates qualitative results through three
representative cases. For small lesions (row 1), DAE, f-AnoGAN, AnoDDPM
and Cyclic UNet generate false negatives by perfectly reconstructing anomalies.
VAE’s poor reconstruction introduces false positives (yellow arrows). In con-
trast, MultiTransAD successfully translates the lesions with normal represen-
tations and highlight the anomaly. For medium lesions (row 2), most methods
including our pixel-level method produce false positives due to imperfect re-
construction/translation in normal regions, leading to decreased specificity. Our
feature dissimilarity maps (orange outlines in the final column) effectively high-
light the anomaly regions and reduce the false positives. For large lesions (row
3), MultiTransAD preserves normal tissue structure while corrupting anomaly
regions during translation. The qualitative results further demonstrate the effec-
tiveness of the proposed model and the dual-level anomaly detection paradigm.

Fig. 3: Column 1: Reference T2 images with radiological annotations (red con-
tours). Columns 2-7: Comparative results from baselines, including recon-
structed/translated T2 images and predicted anomaly segmentation. Columns
8-9: MultiTransAD’s detection process: (8) Pixel-level translation errors high-
lighting intensity discrepancies; (9) Dual-level anomaly segmentation combining
feature dissimilarities (orange outlines) and pixel errors.
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4 Conclusion and Future Work

We presented MultiTransAD, a cross-sequence translation-based framework for
brain MRI anomaly detection. It utilizes inter-sequence contrast discrepancies as
critical biomarkers. The framework’s innovations, including disentangled content-
style encoding, edge-constrained anatomical preservation, and dual-level anomaly
evaluation, address the shortcomings of traditional reconstruction and cyclic-
translation approaches. On the BraTS 2021 dataset, MultiTransAD outper-
formed state-of-the-art reconstruction methods, which demonstrates the promise
of the cross-sequence translation-based UAD paradigm in medical lesion analy-
sis. In the future, we plan to extend this paradigm to a wider range of pathologies
(e.g., multiple sclerosis, stroke) and image modalities (CT/MR or CT/PET).
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