
StyleGAN-based Brain MRI Anomaly Detection
via Latent Code Retrieval and Partial Swap

Jie Wei1, Xiaofei Hu2, Shaoting Zhang1,3, and Guotai Wang1,3

1 University of Electronic Science and Technology of China, Chengdu, 611731, China
2 Department of Nuclear Medicine, Southwest Hospital, Third Military Medical

University (Army Medical University), Chongqing, 400038, China
3 Shanghai Artificial Intelligence Laboratory, Shanghai, 200030, China

guotai.wang@uestc.edu.cn

Abstract. Medical anomaly detection aims at identifying samples that
deviate from normal patterns and localizing specific anomalous regions,
playing a critical role in early detection and intervention of diseases.
Reconstruction methods based on generative models are a key category
among current methods for medical anomaly detection. However, a com-
mon challenge for them is achieving accurate reconstruction of normal
regions while suppressing the reconstruction of anomalous regions. Style-
GAN, with its powerful generative capability and the ability to perform
controllable image modifications, has shown huge potential for medical
image anomaly detection. However, the latent space of StyleGAN still
requires further exploration and utilization. In this paper, we propose
a StyleGAN-based latent Code Retrieval and Partial Swap (SCRPS)
method for brain image anomaly detection. We construct a healthy im-
age latent code repository by leveraging GAN inversion in StyleGAN’s
latent space. We then design a coarse-to-fine latent code retrieval mech-
anism to filter out normal images most similar to test image. We also
introduce a partial latent code swap strategy that replaces anomalous
latent codes with linear combinations of normal latent codes and em-
ploy a perceptual score to perform anomaly localization. Comprehensive
experiments on brain tumor and stroke lesion datasets show that our
method outperforms several state-of-the-art approaches, with 3.12 and
7.14 percentage points improvements in average volume-level AUROC
and maximum achievable Dice score, respectively.
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1 Introduction

Anomaly detection, as a special case of out-of-distribution (OOD) detection [26],
is crucial in early disease detection from brain Magnetic Resonance Images
(MRI) by identifying samples that deviate from normal patterns and localiz-
ing specific anomalous regions, aiding doctors in decision-making and enhancing
their efficiency [21]. Due to the high annotation cost of supervised training and
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its inability to cover unseen anomalies [7], training on normal samples is more ap-
pealing and practical. Anomaly detection, which relies solely on normal samples
for training, follows an unsupervised paradigm and is not limited by annotated
anomaly types, thus significantly reducing the annotation burden on clinicians
and proving especially valuable for detecting rare or novel lesions [6].

Current research on anomaly detection can generally be categorized into
three main categories. Pseudo-outlier augmentation methods [29,33] synthesize
anomalies and their corresponding labels on normal images, thereby convert-
ing the unsupervised task into supervised one. However, due to the diverse and
unpredictable nature of anomalies, these methods cannot comprehensively sim-
ulate all potential anomaly types. Feature-based methods [8,24] typically detect
anomalies by projecting images into a feature space using encoders pre-trained
on natural images. With the emergence of large models, some methods [16,32]
also leverage these models as feature extractors. However, such extractors may
not be appropriately adapted for medical anomaly detection.

Reconstruction-based methods [2,12,25,28] assume that networks trained on
normal data cannot effectively reconstruct anomalous images. Anomalies can
therefore be detected through reconstruction errors. However, if anomalies share
similar compositional patterns with normal data, or if the decoder has strong re-
construction capability, the anomalies may still be accurately reconstructed [30].
Therefore, suppressing the reconstruction of anomalous regions remains a key
challenge for reconstruction-based methods. To deal with this problem, ap-
proaches like MemAE [12] and SQUID [28] enhance reconstruction networks with
memory modules, replacing anomalous image features with weighted combina-
tions of normal features stored in memory. Due to the online updating charac-
teristics of the memory modules and their correspondence to pixel-level features,
they perform well in anatomically aligned scenarios, such as chest X-rays. How-
ever, when applied to scenarios with diverse patterns, such as brain slices that
are more difficult to be well aligned due to large variation of size, pose and and
deformation caused by lesions, they tend to experience performance degradation
or even complete failure.

Among reconstruction-based methods, using a Generative Adversarial Net-
work (GAN) with an encoder-based GAN inversion mechanism to learn the map-
ping from pixel space to latent space for reconstruction is a typical approach,
as seen in methods like f-AnoGAN [25] and Ganomaly [2]. However, traditional
GANs lacks effective latent space decoupling properties, and the encoder-based
GAN inversion method does not always guarantee high-quality reconstruction
performance [27]. In contrast, StyleGAN [17] stands out for generation capabil-
ity and ability to perform controllable image modifications through latent space.
Combined with optimization-based GAN inversion, which treats latent space em-
beddings as learnable variables, StyleGAN can achieve excellent reconstruction
result [1] and has been applied to medical image analysis tasks [14,15]. However,
to fully leverage its potential in anomaly detection, the latent space of StyleGAN
still requires further exploration and utilization.
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In this work, we propose a novel latent code retrieval and partial swap method
based on StyleGAN reconstruction for brain MRI anomaly detection. Our contri-
butions are summarized as follows: 1) We explore the latent space of StyleGAN
for anomaly detection and build an off-line normal image latent code reposi-
tory using GAN inversion; 2) We design a coarse-to-fine retrieval strategy to
filter normal images similar to test images from the normal image latent code
repository to suppress the reconstruction of anomalous regions. 3) We propose
a partial latent code swap strategy to ensure accurate reconstruction of normal
regions for reducing false positives.
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Fig. 1. Overview of the proposed method. (a) The training process of StyleGAN on nor-
mal images. (b) Normal latent code repository construction based on GAN inversion.
(c) Coarse-to-fine normal latent code retrieval and partial latent code swap strategy to
reconstruct corresponding normal image.

2 Method

An overview of our method is presented in Fig. 1. First, a StyleGAN model
is trained on normal images of healthy individuals. Second, GAN inversion is
performed in the latent space S of each training image, and the resulting la-
tent codes are stored as a normal latent code repository M. During inference,
a test image Xt is projected into latent space through GAN inversion to ob-
tain its latent code st. Coarse-to-fine retrieval and combination of normal latent
codes are performed to obtain a fused normal latent code ŝ, which undergoes
a partial swap operation with st before being input into StyleGAN to obtain a
reconstructed image X̃t. Finally, perceptual score is used to localize anomalous
regions.
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2.1 StyleGAN Inversion-based Latent Code Repository
Construction

Overview of StyleGAN. StyleGAN [17] is a generative adversarial network
that consists of a generator G(·) and a discriminator D(·). As shown in Fig. 1(a),
a random noise vector z is projected to a high-dimensional latent space S ∈
R

L×512 (W+ space mentioned in [1]) through a mapping network. The gener-
ator G(·) with L layers accepts latent code s and noise b as input to generate
image. G(·) generates high-resolution images progressively from low-resolution
ones, where s controls the content of each intermediate layer of the generator.
The shallow-layer code primarily captures structural and global features, while
the deeper-layer code focuses on fine-grained details. The discriminator [13] dif-
ferentiates between generated images and real images, providing supervision and
driving the optimization of the entire network.

Latent Code Generation for Training Images. GAN inversion [27] aims
at mapping an input image from pixel space into latent space, where various
real image editing tasks can be efficiently performed [23,10]. The key challenge
of GAN inversion is to find the appropriate inversion space that minimizes dis-
tortion while maintaining editability [19]. Existing research [19] demonstrates
that for StyleGAN, the W+ space can strike a balance between distortion and
editability. Therefore, we conduct GAN inversion in that latent space and build
a latent feature repository using normal images.

Specifically, we keep noise input b fixed for all the training images, and follow
a straightforward optimization process to optimize the latent code s for each
image via a loss function combining perceptual loss [31] and MSE loss between
input image X and reconstructed image X.

s(X) = min
s

Lpercept(X,X) +
λmse

N
∥X −X∥22 (1)

where X = G(s, b), N is the number of pixles in the image, and λmse is a weight
factor.

Lpercept(X,X) =

5∑
j=1

∥Fj(X)− Fj(X)∥22
Nj

(2)

where Fj is the feature output of VGG16 [31] after the j-th convolutional block.
Nj is the number of pixels in the j-th layer output. We optimize each normal
image from the training set to obtain the latent code repository M ∈ RK×L×512,
where K is the size of dateset.

2.2 Latent Code Retrieval, Combination and Partial Swap

Coarse-to-Fine Latent Code Retrieval and Combination. During the
inference stage, we first apply GAN inversion to the test image Xt to derive its
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corresponding latent code st based on Eq. 1. Next, we retrieve the most similar
normal latent code from the latent code repository. However, given that the shal-
low and deep parts of latent codes exert relatively decoupled control over image
content [34], directly comparing the entire latent code fails to explicitly capture
this inherent relationship while suffering from ineffective similarity computation
in high-dimensional spaces, we implement a coarse-to-fine latent code retrieval
strategy as follows:
1. Coarse latent code matching: We initially preserve the first L1 layers from

both test latent code st and latent code repository M, denoted as s<t =
st[0 : L1 − 1] and M< = {s[0 : L1 − 1] for s ∈ M}. We then compute the
cosine similarity between s<t and each latent code in M<, resulting in a
subset P that contains top K1 candidate latent codes with global shapes
and distributions similar to test image Xt.

P =
{
s | s< ∈ M<, sim(s<t , s

<) > simK1
(s<t ,M<)

}
(3)

where simK1(s
<
t ,M<) denotes the K1-th highest value for similarity be-

tween s<t and items in M<.
2. Fine-grained detail refinement: We subsequently preserve the residual layers

from both test latent code st and P to establish fine-grained detail alignment,
let s>t = st[L1 : L−1] and P> = {s[L1 : L− 1] for s ∈ P} denote the deeper
part of the latent codes, we then filter top K2(K2 < K1) samples with the
most similar details to that in Xt.

P ′ =
{
s | s> ∈ P>, sim(s>t , s

>) > simK2(s
>
t ,P>)

}
(4)

where simK2
(s>t ,P>) denotes the K2-th highest value for similarity between

s>t and items in P>.

After obtaining the selected subset P ′, we combine its items to obtain an aggre-
gated latent code ŝ =

∑K2

i=1 wisi, where wi =
sim(st

>,si
>)∑K2

i=1 sim(st>,si>)
for si ∈ P ′.

Partial Latent Code Swap. Although the latent code ŝ can generate a normal
image resembling the test image through the generator network, the distribution
shift between M and st and distortion caused by anomalous lesions to normal
regions often lead to discrepancies in the details of the normal regions between
the synthesized image and the test image. As a result, the synthesized normal
regions may lack precise alignment with the healthy patterns in the test image,
resulting in false positives. In anomalous images, the shallow latent code control
the overall image shape and appearance, and the local anomalies which manifests
more in texture, density, and local morphology is more controlled by the deeper
latent code. Therefore, we propose to partially swap st and ŝ, aiming to preserv-
ing the normal areas of the test image as much as possible where suppressing
the reconstruction of anomalous regions. The swap process is as follows:

s̃ = st[0 : L2 − 1]⊕ ŝ[L2 : L− 1] (5)

where s̃ is the swapped latent code, L2 is the swap starting layer, ⊕ is the
concatenation operation.
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Anomaly Localization based on Perceptual Score. During the anomaly
localization phase, we input s̃ into the pre-trained StyleGAN generator G(·) to
obtain reconstructed image X̃t = G(s̃, b). Subsequently, we employ the normal-
ized perceptual score Aper proposed in [31] to localize the anomaly regions to
better match human eye perception. Similar to the perceptual loss in Section 2.1,
perceptual score uses a pre-trained VGG to extract feature maps from the resid-
ual map between Xt and X̃t, and upsamples them to the original image size.
Aper score for each pixel means the likelihood of being anomaly.

3 Experiments and Results

3.1 Datasets and Implementation Details

In this work, we focus on unsupervised anomaly localization in brain MRI im-
ages. For training, we selected 640 T1-weighted MRI scans of healthy individuals
from the OpenBHB dataset [9], which contains over 5,000 healthy brain scans.
For testing, we used two datasets: the BraTS2020 dataset [20,3,4], consisting
of 369 brain MRI scans for tumors (only T1-weighted images used in our ex-
periment), and the ATLAS dataset [18], consisting of 655 T1-weighted MRI
scans of ischemic stroke lesions. Since StyleGAN is 2D-based, we focused on
axial slices with lesions, and resized them to 160 × 128 pixels. For the ATLAS
dataset, skull stripping was performed using FreeSurfer [11], and we conducted
histogram equalization, histogram matching, and normalization for all data.

We trained StyleGAN V2 [17] with a learning rate of 0.002 for 12,000 itera-
tions. To increase data diversity, we applied two sagittal-axis rotations (ranging
from -15° to 15°) during training. We set the noise input b of StyleGAN’s genera-
tor G(·) to a fixed value zero to focus only on the effect of the latent code on image
generation. For efficiency consideration, we randomly selected 5% of the train-
ing data for GAN inversion, performing 2,000 iterations per slice with a learning
rate of 0.01. The MSE loss weight λmse was 10, and the latent code dimension
was 12 × 512. The hyper-parameter setting was K1 = 100,K2 = 20, L1 = 6
and L2 = 9. For evaluation metrics, we measured volume-level Area Under the
ROC Curve (AUROC) and maximum achievable Dice coefficient (⌈Dice⌉) results
as [5,7].

3.2 Comparison with State-of-the-art Methods

We compared our method with eight state-of-the-art unsupervised anomaly de-
tection methods including reconstruction-based f-AnoGAN [25], Ganomaly [2],
and MemAE [12]; feature-based PatchCore [24] and PaDiM [8]; hybrid methods
DRÆM [29] and RealNet [33] that combine pseudo-outlier augmentation with
reconstruction; and hybrid method MediCLIP [32] that combine pseudo-outlier
augmentation with feature comparision. To ensure fair comparison, we used per-
ceptual score Aper [31] for all the reconstruction-based methods for anomaly lo-
calization. For methods that require feature extraction such as PatchCore [24],
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Table 1. Anomaly localization performance of different methods. ∗ denotes significant
improvement from the best existing method with p-value < 0.05, assessed using a
paired t-test.

Method
BraTS2020 ATLAS

AUROC ⌈DICE⌉ AUROC ⌈DICE⌉

f-AnoGAN [25] 83.52±7.31 24.42±11.72 88.17±5.25 18.09±9.57
Ganomaly [2] 85.41±5.42 26.83±11.60 86.01±5.71 15.60±8.88
MemAE [12] 85.30±6.53 26.26±11.23 84.47±6.04 13.94±9.15
PaDiM [8] 81.15±6.69 22.57±10.98 84.14±6.83 15.36±9.48

PatchCore [24] 80.63±6.76 20.08±10.00 87.76±6.11 19.07±9.93
DRÆM [29] 82.11±5.74 21.09±9.78 66.68±10.99 6.36±7.57

MediCLIP [32] 82.39±10.41 23.35±14.27 87.64±6.53 15.44±10.19
RealNet [33] 80.98±7.34 20.51±10.64 83.54±5.67 13.88±9.38

Ours 89.43±7.03∗ 37.04±14.54∗ 90.38±4.97∗ 24.14±13.05∗

image label f-AnoGAN MemAE PaDiM PatchCore RealNet OursGanomaly

BraTS2020

ATLAS

Fig. 2. Visual comparison for anomaly localization performance of different methods.
Heater color indicates higher probability of being anomaly.

PaDiM [8], RealNet [33] and perceptual score calculation, we used feature maps
at the last three convolutional blocks in VGG16 [31]. MediCLIP [32] used the
image encoder of CLIP [22] as feature extractor.

Quantitative evaluation results of these methods on the two datasets are
shown in Table 1. Our method achieves superior performance across all evalu-
ation metrics on both datasets. On the BraTS2020 dataset, compared with the
best existing method Ganomaly [2], our approach demonstrates improvements of
4.02 and 9.21 percentage points in terms of volume-level AUROC and volume-
level ⌈DICE⌉, respectively. On the ATLAS dataset, our method outperforms
the best existing method f-AnoGAN [25] on AUROC by 2.21 percentage points
and best existing method PatchCore [24] on ⌈DICE⌉ by 5.07 percentage points,
respectively. Fig. 2 presents qualitative visualizations of anomaly localization
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Fig. 3. Effect of hyper-parameters on BraTS2020 test set. (a) shows the average per-
ceptual scores between test image and retrieved images with different K2 values, (b)
shows the impact of K2 and swap starting layer L2 on volume-level AUROC.

results from these methods. Our method demonstrates more precise anomaly
localization ability with reduced false positive than the other methods.

3.3 Ablation Studies

Effectiveness of Coarse-to-fine Latent Code Retrieval. To validate the
effectiveness of our coarse-to-fine latent code retrieval strategy, we conducted ab-
lation studies on the BraTS2020 test set with two approaches: 1) One-stage latent
code retrieval that selects K2 latent codes from M based on sim(st, s) for s ∈ M
and 2) Our coarse-to-fine method with L1 = 6. Fig. 3 (a) shows the average per-
ceptual scores between Xt and the top K2 images retrieved by two approaches
when K2 ranges from 5 to 20. Our proposed coarse-to-fine retrieval strategy con-
sistently achieves higher perceptual score, proving its effectiveness in retrieving
similar images. We further explored the impact and K2 on the experimental
results and set K1 = 5K2. As shown in Fig. 3 (b), once the normal latent code
repository is fully constructed and latent code swap is applied with an appro-
priate L2 value (e.g., 6-10), our method is not sensitive to K2.

Effectiveness of Partial Latent Code Swap. We further investigated the
impact of swap starting layer L2 on localization performance, as shown in Fig. 3
(b). L2 = 0 means not using latent code swap, and the volume-level AUROC was
4% lower than the best-performing latent code swap strategy. As we progressively
replaced from deeper layer within the latent code, the performance of anomaly
detection firstly improved and then declined. The AUROC and ⌈DICE⌉ scores
achieved their highest values when L2 = 9. This means that a balance is achieved
between preserving normal regions and replacing anomalous regions.
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4 Conclusion

In conclusion, we proposed SCRPS, a StyleGAN-based latent code retrieval and
partial swap method for brain MRI anomaly detection. By leveraging Style-
GAN’s reconstruction ability and latent space editability, we built a normal la-
tent code repository for healthy images. During inference, a coarse-to-fine latent
code retrieval strategy is used to obtain the most similar latent codes to recon-
struct a normal image resembling the test image. To minimize false positives, we
designed a partial latent code swap approach to retain the global structure of
the test image. Experimental results on brain tumor and stroke image datasets
showed the effectiveness of our method. In the future, it is of interest to explore
the impact of our method on other types of anomaly detection.
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