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Abstract. Anomaly detection is an emerging approach in digital pathol-
ogy for its ability to efficiently and effectively utilize data for disease
diagnosis. While supervised learning approaches deliver high accuracy,
they rely on extensively annotated datasets, suffering from data scarcity
in digital pathology. Unsupervised anomaly detection, however, offers
a viable alternative by identifying deviations from normal tissue dis-
tributions without requiring exhaustive annotations. Recently, denois-
ing diffusion probabilistic models have gained popularity in unsuper-
vised anomaly detection, achieving promising performance in both nat-
ural and medical imaging datasets. Building on this, we incorporate a
vision-language model with a diffusion model for unsupervised anomaly
detection in digital pathology, utilizing histopathology prompts during
reconstruction. Our approach employs a set of pathology-related key-
words associated with normal tissues to guide the reconstruction process,
facilitating the differentiation between normal and abnormal tissues. To
evaluate the effectiveness of the proposed method, we conduct experi-
ments on a gastric lymph node dataset from a local hospital and assess
its generalization ability under domain shift using a public breast lymph
node dataset. The experimental results highlight the potential of the pro-
posed method for unsupervised anomaly detection across various organs
in digital pathology. Code: https://github.com/QulIL/AnoPILaD.

Keywords: Unsupervised Anomaly Detection - Diffusion Model - Visual-
Language Model - Lymph Node Metastasis.

1 Introduction

Lymph node metastasis is a crucial prognostic factor in cancer progression and
treatment decisions [1]. With the advent of digital pathology, several artificial
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intelligence approaches have been proposed to automate the detection of lymph
node metastasis within tissues. Many of these methods are based on super-
vised learning methods, leveraging convolutional neural networks (CNNs) and
transformer-based models to identify metastasis with high accuracy [2]. While
effective, these methods heavily depend on exhaustive expert annotations, which
are time-consuming and resource-intensive. To address this limitation, unsuper-
vised learning has emerged as a viable alternative, as it does not demand man-
ual annotations. In unsupervised learning, a model is trained solely on normal
(in-distribution) samples to learn a representation of in-distribution patterns.
The trained model then detects abnormal or out-of-distribution (OOD) samples
by identifying deviations from the learned in-distribution patterns, making it
particularly well-suited for large-scale applications in digital pathology, where
annotated abnormal samples are scarce [3].

Recently, generative models have been widely used for unsupervised anomaly
detection, with two popular approaches: density-based methods and reconstruction-
based methods. Density-based methods, such as variational autoencoders (VAESs)
[4-7], learn representations of in-distribution data, assigning higher likelihoods
to in-distribution samples and lower likelihoods to OOD samples. In contrast,
reconstruction-based methods are trained exclusively on normal data to guar-
antee poor reconstruction quality for abnormal samples and high reconstruc-
tion quality for normal samples. These include autoencoder (AE)-based mod-
els [8-10], Generative Adversarial Network (GAN) [11-13]-based models and
denoising diffusion probabilistic model (DDPM)-based [14-17] models.

In this paper, we introduce AnoPILaD, a Pathology-Informed Latent Diffu-
sion model for anomaly detection in lymph node pathology images. This frame-
work combines a latent diffusion model (LDM) [18] and a vision-language model
(VLM) [19] for an improved identification of anomalies in pathology images.
AnoPILaD utilizes a LDM to learn a compact representation of normal images
in a latent space via iterative diffusion and denoising processes while preserv-
ing critical histopathological features. AnoPILaD also adopts a VLM to select
pathology-specific normal keywords, semantically guiding the reconstruction pro-
cess towards a specific direction. In this manner, AnoPILaD achieves small devi-
ations for normal samples and large deviations for abnormal samples, enhancing
the accuracy and robustness of anomaly detection.

2 Methods

2.1 Pathology-Informed Latent Diffusion Model

Recent research often employs DDPMs for reconstruction-based anomaly de-
tection. A trained DDPM py generates samples that match the in-distribution
patterns zg ~ ¢(zo) by adding noise in a forward process (diffusion process),
which has tractable posteriors at time ¢ — 1:

4(ze—1|20,20) = N (zt_l‘ﬂ(zt(zo,e),t),ﬁtl) (1)



Title Suppressed Due to Excessive Length 3

where ¢ ~ [1,1000], ¢ ~ N(0,I), z¢ is a noisy sample, and B, is a predefined
constant. The model progressively removes noise in a reverse process:

po(zi—1lz) =N (th‘ue(Zt(zO,60),t),3t1) (2)

where €y is an approximator to predict € from zy. The model is trained by
decreasing the KL divergence between two Gaussians, and a simple objective
function is given by:

L= Egtenno) |l —co(ze, )3 - (3)

A previous work [17] adopted a DDPM for detecting breast lymph node metas-
tasis, referred to as AnoDDPM, where normal samples are in-distribution data
and metastasis samples are OOD data. The pretrained DDPM denoised par-
tially diffused inputs zy ~ ¢(z¢|zo) while steering the reverse process toward
in-distribution patterns and get the reconstruction zg ~ pg(zo|z1.¢). Then, the
discrepancy between the input zg and its reconstruction zg serves as the anomaly
score, which is expected to be small for normal samples and large for metas-
tasis samples. Though successful, AnoDDPM exhibited a substantial number
of false positive [17], indicating its insufficient ability to differentiate samples
from normal and OOD distributions (Fig. 1). To address this issue and improve
anomaly detection performance, AnoPILaD integrates a LDM with pathology-
specific textual prompts, based on the assumption that these prompts enhance
reconstruction quality and, in turn, magnify the contrast between normal and
abnormal samples. We train a LDM with the following objective:

£ = By peconion [le = eolzt, o)l3] (4)

where ¢ denotes a textual prompt. We conduct pathology-informed reconstruc-
tion for lymph node pathology images by using the same reconstruction proce-
dure with AnoDDPM. Only exception is that the reverse process is guided by
the textual condition, which is given by Zg ~ pg(zo|2z1.t, C).

2.2 Weighted Prompts Generation

To introduce a stronger inductive bias to the reconstruction process, we pro-
pose to exploit prior pathology knowledge of normal lymph nodes. Specifically,
we collect a pool of 74 pathology keywords from the literature, describing char-
acteristics of cells and microenvironments of normal lymph nodes and tissues.
These keywords are reviewed and validated by an experienced pathologist to
ensure clinical relevance and accuracy.

Given a pathology image, we align it with the pathology keywords, identify
the most relevant keywords, and use them to generate a text prompt, guid-
ing the reconstruction process towards a pathology-informed direction (Fig. 2).
To achieve the alignment between pathology images and keywords, we adopt
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ct and Related Prompts

: 1.Small dormant lymphocytes;
‘ i 2.Lymphocytes; ;
3.Large and small cleaved
¢ follicular center cells
¥R 1.Small dormant Iymphocytes:é

2.Lymphocytes; :
: 3.B-cell-rich non-germinal
| center;

1.Small dormant lymphocytes;:
¥ || 2.Littoral cells:

3.B-cell-rich non-germinal

i center;

Fig. 1. Lymph node image reconstruction using diffusion-based methods. Using text
prompts, AnoPILaD produces normal-like pathology images for both in-distribution
(in) and out-of-distribution (OOD) samples.

CONCH [20], a vision-language foundation model pre-trained on over 1.17 mil-
lion pathology image-caption pairs. The image encoder and text encoder of
CONCH are used to produce image and text embeddings for each pair of in-
put image and keywords, respectively. Then, we compute cosine similarity scores
between image embeddings and text embeddings and choose top-five most sim-
ilar keywords. The similarity scores of the selected keywords are subsequently
normalized by dividing by the median score. Using the selected keywords and
their normalized scores, we generate a weighted prompt as shown in Fig. 2. The
weighted prompt is transformed into an embedding vector, which is fed into the
LDM, following the procedure illustrated in the Compel library *.

Table 1. Label Distribution of Two Datasets

Dataset ‘WSI-level dataset Patch-level dataset

Dtur} \l/Ual D;Lf] Dowut ( g)ut,m) Dfr D€a1 Dlpn Dgut (Dgut m)
LH 643 50 58 57 1,373,475 102,240 174,703 115,330
C16 - 32 80 49 (22) - 37,056 240,139 55,659 (55,536)

3 Experiment

3.1 Dataset

We obtained a gastric lymph node dataset from two local hospital (LH) sites
containing 808 Whole Slide Images (WSIs), where 751 of them are normal and
57 are metastasis WSIs with partial annotation. All the metastasis WSIs are

* https://github.com/damian0815 /compel
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Pathology Keywords

N Top 5 Scores Normalization
Alignment between

Text Embeddings and Image W

Embeddings
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histiocytes and high endothelial venules
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0 83| littoral cells

Weighted
Prompt
A histopathological photograph of (small dormant lymphocytes: 1.06) and (small B and T 1.04) and 1.00)
and (histiocytes and high endothelial venules: 0.9) and (littoral cells: 0.83)
Train Test
lymphocytes small dormant
23
large and small cleaved 2% lymphooytes 22 * %)
2% 2%
follicular center cells scant
cytoplasm and inconspicuous germinal center
nucleoli o -
s  histiocytes and high ” % littoral cells
large B lymphocytes % endothelial venules % %
bl 3 ” o abundant cytoplasm
mantle zone
small B and T lymphocytes A ™ R = with medium to large
B-cell-rich non- nuclei with vesicular
large B cells scattered throughout the paracortex germinal center In-Distribution Out-of-Distribution chromatin

Fig. 2. (Top) Hlustration of generating weighted text prompts. (Bottom) Distribution
of top-10 frequent pathology keywords in the training and test sets the local hospital
dataset.

used as an OOD test set (DX*). The normal WSIs are split into a training set

out

of 643 WSIs (D), a valid set of 50 WSIs (DX*) and an in-distribution test

val

set of 58 WSIs (Df Howy We further divide WSIs into patches, resulting in D?
(1,373,475), DEHP (102,240), DL (174,703 patches, 138054 from DEP* and

val

36649 from normal annotated DLHw), and DEPP (115,330 with fully metas-

out out
tasis annotation). Moreover, we employed the Camelyonl6 Challenge dataset

(C16) [21], a breast lymph node dataset, for independent testing. We utilize 32

normal WSIs as a valid set (Dfall6 ), 80 normal WSIs as an in-distribution test

set (DS6") and 49 metastasis WSIs as an OOD test set (D55"). Among the

out
49, 22 WSIs contain tumor cell cluster larger than 2 mm in diameter, designated

as C16 Macro (DC16 ). All tumor regions in LH are larger than 2 mm in diam-

out,m
eter. We further divide WSIs into patches, resulting in DfallG’p (37,056), Dgw’p
(240,139), and DS!5P (55,659 patches with fully metastasis annotation). The

base prevalence are 0.3976 (DXP); 0.4956 (DEHw); 0.1882 (DC16:P); 0.3798
(DC16w); 0.2157 (DC16:wmacro)  For patch-level evaluation, WSIs from both
LH and C16 are divided into 256x256 pixel patches using the pixel-level an-
notations. All WSIs are processed at 20x magnification. An overview of the
datasets is presented in Table 1.

3.2 Experiment Details

To implement AnoPILaD, we utilized the stable diffusion model v1.5. The dif-
fusion model was fine-tuned with Adam optimizer, a learning rate of le-5, and
a batch size of 64 using low-rank adaptation (LORA) with the update matrices
dimension of 4. We used FID (Frechet Inception Distance) [22] to measure the
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quality of the images generated by the diffusion model. At 400k steps, the model
achieved the lowest FID, which was chosen for subsequent testing. The input
image size was 256 x256 pixels. We compared AnoPILaD with both density- and
reconstruction-based OOD methods. For density-based methods, we used the
negative likelihood (NLL) of a VAE backbone [4] and its three variants: Re-
gret [5], LLR [6], and complexity [7]. The latent vector size was set to 100, and
64x 64 pixels input images were randomly cropped. As for reconstruction-based
methods, we employed f~-AnoGAN [13], AE, and MemAE [10]. {-AnoGAN used
randomly cropped 64x64 input image patches. For AE and MemAE, they fol-
low the architectural design of [10] and input image size was 256x256 pixels.
Both AnoDDPM and AnoPILaD were implemented using Diffusers library [23]
and used a PLMS sampler [24] with 100 timesteps in inference. Unless otherwise
specified, the training procedures followed those outlined in the original work.

For each method, we calculated z-scores of the anomaly scores for all the
patches in each testing set and evaluated patch-level OOD detection by comput-
ing area under a receiver operating characteristic curve (AUC) and area under
the precision-recall curve (AUPR). For WSI-level evaluation, we produced a z-
score heatmap and applied a morphological erosion operation [25] with a 2x2
window since metastasis area can be very small. We then assessed the classifica-
tion and segmentation performance of each model. For classification, we adopted
two methods: maximum z-score (Zps ax) and average of 99th percentile z-scores
(Zg9). These are used to calculate WSI-level AUC and AUPR. For segmentation,
we calculated the mean patch-level DICE and intersection-over-union (IoU) of
DY, to assess the overlap between the predictions and annotations, and the
mean patch-level true negative rate (TNR) of DY since there is no positive re-
gions. The segmentation prediction threshold was zero. To decide reconstruction
timestep for two diffusion model-based methods, we tested eight timestep val-
ues as in [17] and chose the timestep according to the best WSI classification
performance on LH test set, which is 674 for both methods.

4 Results

We trained AnoPILaD and all competing models with only Dy, and separately
evaluated their patch-level and WSI-level performance on two distinct datasets
originated from different organs. Thus, this evaluation provides insights into the
robustness of the models against domain shifts due to variations in tissue types.

Table 2. Patch-level Anomaly Detection Results

NLL Regret LLR complexity fAnoGAN AE MemAE AnoDDPM AnoPILaD

LH AUC 0.4982 0.6720 0.6078 0.7931 0.2289 0.9254 0.9290 0.8555 0.9587
AUPR 0.5552 0.6718 0.6260 0.7139 0.3377 0.8906 0.8886 0.7841 0.9499

C16 AUC 0.3250 0.6480 0.7065 0.7752 0.1735 0.6584 0.6611 0.6857 0.8884
AUPR 0.1600 0.3441 0.4765 0.5140 0.1104 0.4759 0.4880 0.5741 0.6987
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Table 2 presents the performance of patch-level anomaly detection. AnoPI-
LaD substantially outperformed all other methods. Among the four density-
based methods (NLL, Regret, LLR, and complexity), NLL failed to distinguish
OOD patches from normal patches. Its variants improved performance, with the
complexity method achieving the largest improvement. Despite these improve-
ments, complexity remained substantially inferior to AnoPILaD, with a large gap
of ~0.16 AUC and ~0.23 AUPR. Among the reconstruction-based methods, f-
AnoGAN demonstrated the poorest performance, while AE-based methods (AE
and MemAE) achieved the highest scores. In LH, their AUC and AUPR scores
were approximately 0.03 and 0.05 lower than AnoPILaD, respectively. However,
in C16, the performance gap substantially increased to ~0.22 in AUC and ~0.22
in AUPR, indicating the superior robustness of AnoPILaD against domain shifts
due to differences in organ types.

Table 3. WSI-level Anomaly Detection Results

LH C16 C16 Macro
Classification AUC AUPR - AUC AUPR - AUC AUPR
AR Zmaz 0.9622 0.9612 - 0.6612 0.5961 - 0.6398 0.3677
Zgg  0.9395 0.9381 - 0.5798 0.5217 - 0.5523 0.2918
MemAR Zmaz 0.9504 0.9440 - 0.6505 0.5689 - 0.6381 0.3657
99 0.9365 0.9382 - 0.5686 0.5313 - 0.5597 0.3141
Zmaz 0.7840 0.6616 - 0.4992 0.3885 - 0.4926 0.2146
AnoDDPM Zgg  0.9383 0.8995 - 0.4551 0.3905 - 0.5119 0.2347
AnoPILaD Zimaz 0.9837 0.9740 - 0.6745 0.6140 - 0.8062 0.5965
Zgg  0.9943 0.9948 - 0.6367 0.5902 - 0.8023 0.5886 -
LH C16 C16 Macro
Segmentation TNR DICE IoU TNR DICE IoU TNR DICE IoU
AE 0.7981 0.3812 0.2902 0.4536 0.1745 0.1317 0.4536 0.3249 0.2549
MemAE 0.7957 0.3863 0.2932 0.5593 0.1377 0.1039 0.5594 0.2173 0.2124
AnoDDPM 0.7850 0.4319 0.3259 0.7842 0.1765 0.1142 0.7842 0.3131 0.2075
AnoPILaD 0.8097 0.4322 0.3311 0.8312 0.3098 0.2326 0.8312 0.5420 0.4275

At the WSI-level, we further confirmed our findings from patch-level anomaly
detection. Table 3 shows the WSI-level anomaly detection results for the four
top-performing models (AE, MemAE, AnoDDPM, and AnoPILaD) in patch-
level anomaly detection. For the classification of normal and abnormal slides,
AnoPILaD was superior to all competing models across both datasets, evaluation
metrics, and scoring strategies (Zysax and Zgg). The performance of AnoPILaD
and other three models substantially varied between LH and C16. In LH, the
four models obtained 0.7840~0.9943 AUC and 0.6616~0.9948 AUPR, whereas
their performance dropped in C16, with 0.4551~0.6745 AUC and 0.3885~0.6140
AUPR. Nonetheless, AnoPILaD exhibited the smallest best performance drop of
0.3092~0.3576 AUC and 0.3600~0.4046 AUPR, highlight its robustness across
datasets and organ types. In regard to large metastatic regions (C16 Macro),
the performance generally declined for all models; however, AnoPILaD obtained
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AUCs ranging from 0.8023 to 0.8062, suggesting its superior potential for cross-
organ anomaly detection in lymph nodes.

Evaluating the segmentation results of metastatic regions, the strength of
AnoPILaD was obvious, achieving the highest scores for all evaluation scenar-
ios. We also observed that there are clear differences between the two anomaly
detection approaches. Although AE-based methods (AE and MemAE) obtained
comparable classification performance with diffusion-based methods (AnoPILaD
and AnoDDPM), their segmentation performance was substantially poorer. As
shown in Fig 3, MemAE assigns similar scores for all pixels in a slide, indicating
a lack of specificity in detecting metastatic regions. The behavior of AE is al-
most identical to MemAE. These results suggest the importance of segmentation
performance in the evaluation of anomaly detection, as classification alone may
not accurately assess a model’s ability to localize abnormal regions.

Raw Slide MemAE AnoDDPM AnoPILaD(Ours)  Raw Slide MemAE AnoDDPM AnoPILaD(Ours) "
L@@ A @ A OEFOT O O [

(0.83,0.42) (091, 0.59) (0.96, 0.59) (0.64,0.18) (0.90,0.25) (0.92,0.27)

B S U T Sl e il

(0.99,0.97) (0.97, 0.88) (0.99, 0.99) (0.97, 0.80) (0.88, 0.34) (0.98, 0.90)

Z-score Values

Fig. 3. Z-score heatmaps for four metastasis slides from two datasets with black con-
tour showing metastasis annotation and green contour showing normal annotations.
Numbers in parentheses denotes (Zgg, Dice) per slide.

We visualize and compare the reconstruction results by AnoPILaD and An-
oDDPM (Fig 1). Starting from raw images, AnoPILaD and AnoDDPM aim to
reconstruct normal-like structures with and without textual guidance, respec-
tively. For an in-distribution sample (first row), both models successfully gener-
ate images with normal histologic features, preserving small, dense lymphocytic
structures. However, as for OOD samples (second and third rows), which contain
metastatic regions with disrupted tissue architecture, the differences between two
models become more apparent. AnoDDPM partially reconstructs metastatic re-
gions and fails to fully suppress pleomorphic nuclei and fibrotic tissue, leading to
residual abnormalities that obscure the boundary between normal and abnormal
structures. In contrast, with the guidance of text prompts, AnoPILaD generates
images with more uniform lymphocytic arrangements, while suppressing distor-
tions in tissue architecture. This results in a clearer distinction between normal
and metastatic regions.
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5 Conclusion

We propose AnoPILaD, a pathology-informed LDM for unsupervised anomaly
detection in lymph nodes. By leveraging histological context provided through
prompts, AnoPILaD introduces a stronger inductive bias during the reconstruc-
tion process, enhancing sensitivity to abnormal features and improving detec-
tion performance. Evaluating both patch-level and slide-level performance across
two organ types, AnoPILaD substantially outperforms other anomaly detection
methods including both density- and reconstruction-based approaches. The fu-
ture study will entail the extension of AnoPILaD to further enhance its per-
formance on cross-organ datasets, improving its adaptability and robustness in
broader pathological applications.
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