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Abstract. Digital Subtraction Angiography (DSA) is the gold standard
in vascular disease imaging but it poses challenges due to its dynamic
frame changes. Early frames often lack detail in small vessels, while late
frames may obscure vessels visible in earlier phases, necessitating time-
consuming expert interpretation. Existing methods primarily focus on
single-frame analysis or basic temporal integration, treating all frames
uniformly and failing to exploit complementary inter-frame information.
Furthermore, existing pre-trained models like the Segment Anything
Model (SAM), while effective for general medical video segmentation,
fall short in handling the unique dynamics of DSA sequences driven
by contrast agents. To overcome these limitations, we introduce Tem-
SAM, a novel temporal-aware segment anything model for cerebrovascu-
lar segmentation in DSA sequences. TemSAM integrates two main com-
ponents: (1) a multi-level Minimum Intensity Projection (MIP) global
prompt that enhances temporal representation through a MIP-guided
Global Attention (MGA) module, utilizing global information provided
by MIP, and (2) a complementary information fusion module, which
includes a frame selection module and a Masked Cross-Temporal Atten-
tion Module, enabling additional foreground information extraction from
complementary frame. Our experimental results demonstrate that Tem-
SAM significantly outperforms existing methods. Our code is available
at https://github.com/zhang-liang-hust/TemSAM.
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1 Introduction

Digital Subtraction Angiography (DSA) [2] is highly effective in displaying vas-
cular abnormalities, making it the gold standard for the diagnosis and treatment
planning of vascular diseases such as blood flow, stenosis, and thrombosis. DSA
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sequences (Fig. 1-(a)) capture only transient snapshots of the dynamic vascular
structure, with early frames often lacking detail in thin vessels (yellow arrow)
and late frames providing poor visualization of the early phase vessels (red ar-
row). In contrast, its corresponding minimum intensity projection (MIP) image
(Fig. 1-(b)) exhibits good visibility of the entire vessel structure. Meanwhile, un-
like video object segmentation tasks in natural scenes, the apparent emergence
or disappearance of vascular structures in DSA sequences reflects temporal varia-
tions in contrast agent distribution rather than physical movement, necessitating
expert interpretation [4]. Consequently, the analysis of DSA sequences heavily
relies on the expertise of radiologists, a process that is both time-consuming and
labor-intensive. This has driven the development of fully automated methods for
segmenting vascular structures in DSA sequences.

Recently, Convolutional Neural Networks (CNN)-based methods [11, 19,13,
14,16,17,21] have been developed for automatic vessel segmentation. Some fo-
cus on single-frame DSA analysis. For instance, Zhang et al. [21] firstly proposed
a U-shaped network for cerebrovascular segmentation in single-frame DSA im-
ages. Xu et al. [17] proposed an Edge Regularization Network for cerebral vessel
segmentation, using erosion-dilation for pseudo-labels generation and a Hybrid
Fusion Module for refined predictions. Other studies utilize temporal informa-
tion in DSA sequences. Su et al. [13] introduced CAVE, which uses a ConvGRU
module to encode temporal features from 2D-+time DSA series for A/V segmen-
tation. Xie et al. [16] developed DSNet, a spatio-temporal network that incorpo-
rates MIP images as a spatial branch to enhance accuracy. However, CNN-based
approaches still face challenges such as limited domain-specific training sam-
ples and restricted representation capabilities due to inadequate model capacity,
making it difficult to achieve optimal vessel segmentation in DSA sequences.

The recently proposed Segment Anything Model (SAM) [6], trained on the
large-scale data set SA-1B, has powerful feature extraction capabilities and can
accurately focus on semantics of interest based on user prompts (e.g., points
and bounding boxes). Hence, several studies have applied SAM to improve seg-
mentation accuracy in medical scenarios [1, 3,5, 8,9, 15,22]. For 2D medical im-
ages, adapter-based methods have been proposed to adapt SAM on medical
datasets. For instance, Med-SA [15] designs a lightweight bottleneck composed
of a down-projection, ReLLU activation, and up-projection for fine-tuning. Sev-
eral approaches have been developed to enhance the Segment Anything Model
(SAM) for medical video segmentation by incorporating temporal strategies.
MediViSTA-SAM [5] integrates cross-frame attention into SAM to capture tem-
poral information. MedSAM?2 [22], a generalized auto-tracking model based on
SAM2 [10], treats video segmentation as an object tracking problem. Despite
these advancements, existing methods either focus solely on single-frame analy-
sis without integrating temporal information or indiscriminately treat all frames
equally, overlooking the fact that certain frames, being more informative, can
offer enhanced guidance for the target vessels.

To address the above challenges, we propose a novel method for vessel seg-
mentation in DSA sequences based on SAM, named TemSAM, which adopts
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a local-global fusion strategy. TemSAM fully utilizes the global information
provided by the MIP image and the supplementary information from comple-
mentary frames to enhance contextual representation. Specifically, we design a
multi-level MIP global prompt that enables parallel encoding of video clips and
MIP image, using a MIP-guided Global Attention module to integrate global in-
formation from the MIP image. The MIP global feature also serves as dense
prompts to guide the decoding process. Additionally, we develop a novel com-
plementary information fusion module consisting of a frame selection module
and a Masked Cross-Temporal Attention (MCTA) module to achive complemen-
tary information fusion. The frame selection module identifies complementary
frames with significant foreground differences compared to current video clip.
The MCTA module then aggregates features from complementary frames and
temporal information using preliminary segmentation maps, thereby facilitating
high-precision vessel segmentation. In comparisons with various existing meth-
ods, we achieve state-of-the-art performance for cerebrovascular segmentation in
DSA sequences, particularly excelling in the segmentation of thin vessels.
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Fig.1: Overview of the DSA sequence. (a) is a DSA sequence. (b) is the MIP
image of the DSA sequence. (c) is the ground-truth of the DSA sequence.

2 Proposed Method

2.1 The Overall Architecture of TemSAM

Given a DSA sequence x = {1, %2, ...,2,} and an MIP image, our objective is
to predict a final segmentation map for the input sequence. As shown in Fig. 2,
the DSA sequence comprises two components: current video clips clip; (in yellow
bounding boxes) and remaining frames f. (in green bounding boxes). f. contains
supplementary contextual information for clip,. MIP image f,, provides compre-
hensive vascular structures information across all phases. We adopt a local-global
fusion strategy: each clip; generate a prediction Pred; and the final prediction
Pred is the average of all clips’ prediction, i.e., Pred = Avg(}_;_, Pred;), where
n is the number of frames.

The overall architecture of TemSAM is built upon SAM. TemSAM employs a
dual-branch image encoder to separately extract temporal information from lo-
cal clips and global structural information from MIP images. To adapt SAM for
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cerebrovascular segmentation, we fine-tune it with an adapter module. In the lo-
cal temporal branch and the global prompt branch, we utilize S-Adapter [15] and
T-Adapter [5] separately. To effectively leverage MIP-derived global knowledge,
we design a MIP-guided global attention (MGA) module between two branches,
providing global context guidance for local feature extraction. Additionally, the
deepest global feature Fj is fed into the mask decoder as dense prompts. Further-
more, we select the most complementary temporal information from the entire
DSA sequence for the current clip and use it to refine the features of the current
clip. We perform frame selection using cosine similarity, sampling the least simi-
lar one as complementary frame F, from the remaining frames’ features F,. with
respect to Fy. To more effectively and precisely guide the integration of comple-
mentary information in foreground vascular regions, we introduce a two-stage
hierarchical mask decoder. In the first stage, TemSAM uses SAM’s original de-
coder to generate initial predictions M. In the second stage, we employ a Masked
Cross-Temporal Attention (MCTA) module to guide feature interaction between
F; and F, within the foreground region using mask M.
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Fig.2: (a) Overview of the proposed TemSAM. TemSAM integrates an adapter-
based dual-branch image encoder coupled with a two-stage hierarchical decoder.
(b) MIP-guided Global Attention module. (c) Masked Cross-Temporal Attention
module.

2.2 Multi-level MIP Global Prompt

Dual-branch Encoder. the MIP image provides vascular prior information
for the DSA sequence, and thus, we leverage MIP images as prompts to en-
hance feature extraction of temporal information. In our method, both the MIP
image and DSA sequences are fed into the encoder for parallel encoding. Specif-
ically, the global prompt branch employs an S-Adapter [15] in 2D dimension,
which sequentially performs dimension reduction, ReLU activation, and dimen-
sion restoration. The local temporal branch utilizes a T-Adapter based on multi-
head self-attention (MHSA) mechanisms [5] along the temporal dimension to
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capture temporal information. The procedure of the two adapters can be formu-
lated as:
As(z) = RELU (W)W, (1)

Ai(x) = MHSA(Reshape(x € REXTIXHXWXC _, 4 o RIBXHXW)XTXCYy (9)

where Wy € R9* 4 and W, € R%%4 are the projection matrices, d is the dimen-
sion of the feature. Through these operations, S-Adapter and T-Adapter enable
the encoder to better adapt to the feature distribution of medical image domains.
MIP-guided Global Attention (MGA). The MGA module utilizes the global
information of MIP to help aggregate the temporal information within the local
window. This module establishes hierarchical interaction between global MIP
features F and local temporal features F} in multiple layers. MGA enables the
MIP image to progressively guide and refine the extraction of local temporal
information throughout the network. As shown in Fig. 2(b), we formulate F} as
queries while designating F; as corresponding keys and values. The MGA can
be formulated as:

F}" = softmax(F}W, - (FiWy)" /\/dy) - (FiW,) (3)

where d,,, is the dimension of MGA and ¢ represents the current layer number
in the encoder. W, € RéXdm W, € R¥¥dm and W, € R4¥%n are the learnable
weight matrices used to project Fy and Fy to different subspaces. The output

of MGA F{" is enhanced temporal feature which will be added to F; and then
used in subsequent encoding layer.

2.3 Complementary Information Fusion Module

Frame selection. Local video clip often lacks some information regarding vas-
cular visibility, while distant frames can provide necessary complementary infor-
mation. Therefore, we aim to identify the most complementary frames for clip;.
Specifically, given current clip’s mean feature Ft/ (generated by averaging Fy) and
remaining frames’ features F. , we select the feature F. that is most dissimilar
to F; from m candidate frames. This module outputs the index of selected frame
with the lowest similarity, which can be interpreted as

ind = argminicis m{Sim(Fy, F})} (4)

where idz is the index of the selected complementary frame, 7 € [1,m] indicates
the ith candidate frames, and argmin is used to calculate the index of the frame
with the lowest similarity, and Sim is the similarity function as follows:

Sim(X,Y) = (X -Y) /Vdim (5)

According to equ.5, cosine distance is used to calculate the similarity between
the F,. and Ft' , and dim represents the dimension of the input feature.

Masked Cross-Temporal Attention (MCTA). The MCTA module estab-
lishes a connection between the stage-1 decoder’s feature Fi;41 and the comple-
mentary frame’s feature F.. Unlike cross-attention which attends to the global
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context, MCTA is guided by the predictions from the stage-1 and operates within
the predicted mask, thereby further supplementing missing local features in the
foreground areas. The MCTA module can be formulated as:

/

Fg1 = M © softmax(Fg1 Wy - (FseWi)" /V/di) - Fstg1 Wo (6)

which employs the probabilistic map M of stage-1 resized to the same spatial
resolution as the attention map. Wy, Wy, and W, are the learnable weight matri-
ces and d,, is the dimension of MCTA. With pixel-wise multiplication between
M and the attention map, background will be ignored by multiplying a near-
zero probability. The output F; S/tgl is added to Fit41 and fed into the stage-2 for
subsequent decoding process.

Additionally, the training loss will be applied to each stage in our mask
decoder. This ensures thorough supervision and facilitates high-resolution pre-
diction through hierarchical feature fusion.

3 Experiments

Datasets. The proposed TemSAM is evaluated on two cerebrovascular segmen-
tation datasets DIAS [7] and DSCA [20]. DIAS annotates 60 sequences with 321
frames. DSCA includes 1792 frames from 224 sequences. All DSA sequences are
resampled to a length of 8. We train on DIAS and split the training, validation,
and test sets with a ratio of 3:1:2 following [7]. The DSCA dataset is used to
test the generalization ability.
Evaluation Metrics. We evaluate the segmentation performance using DSC,
clDice [12], IoU, Acc, and AUC. Given that accurately segmenting thin vessels
presents a significant challenge, we conduct evaluation for vessels thinner than 7
pixels, following [18]. A 5-pixel search range is assigned to each thin vessel, and
pixels within this range are counted for pixel-to-pixel matching. The performance
is evaluated using three metrics: DSCypipn, Accinin and 10Uy ;,.
Implementation Details. We adopt Med-SA [15] as the baseline. The model
is initialized with pre-trained ViT-B weights from SAM and implemented using
Pytorch on three NVIDIA RTX A6000 GPUs. All frames are resized to 800x800
pixels with a clip length of 3. We apply data augmentation, including horizon-
tal and vertical flipping, brightness/contrast adjustment, and random rotations.
AdamW optimizer is utilized (81 = 0.9, 2 = 0.999) with a StepLR scheduler
that decreases the learning rate by 0.9 every 10 epochs. For a fair comparison, all
models are re-implemented and trained for 200 epochs under the same settings.
Comparison with SOTA Methods. To demonstrate the superiority of our
proposed method, we compare our method with some state-of-the-art (SOTA)
methods, including task-specific methods [7,13,11], SAM-based 2D methods [8,
1,15], and SAM-based temporal methods [3,5,9, 22].

As quantitatively demonstrated in Tab.1 and 2, TemSAM significantly out-
performs existing SOTA task-specific methods across all evaluation metrics.
These improvements can be primarily attributed to the multi-level MIP prompt,
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Table 1: Comparative results on DIAS dataset.

Type [Method | DSC Acc 10U  AUC  clDice [DSCinin Accinin I0Usnin
VSS-Net [7] 0.7577 0.9631 0.6131 0.9762 0.6794| 0.7186 0.9681 0.5641
task-specific 3D-UNet [11] 0.7618 0.9637 0.6184 0.9818 0.6879| 0.7156 0.9678 0.5676
ST-UNet [13] 0.7702 0.9630 0.6340 0.9835 0.7122| 0.7147 0.9602 0.5630
MedSAM [8] 0.6656 0.9512 0.5004 0.9339 0.5181| 0.5592 0.9595 0.3907
SAM-based 2D SAM-Med2D [1] 0.6948 0.9556 0.5344 0.9597 0.5684| 0.6220 0.9599 0.4537
Med-SA [15] 0.7107 0.9548 0.5526 0.9688 0.6277| 0.6534 0.9597 0.4869
VP-SAM [3] 0.5756 0.9406 0.4072 0.9363 0.4284| 0.5188 0.9435 0.3536
MedSAM2 [22] 0.7070 0.9549 0.5485 0.9697 0.6126| 0.6321 0.9592 0.4629
SAM-based temporal
SAM+ST-Adapter [9]| 0.7548 0.9605 0.6074 0.9826 0.7047 | 0.7011 0.9635 0.5413
MediViSTA-SAM [5] | 0.7597 0.9631 0.6142 0.9827 0.6898 | 0.7035 0.9659 0.5445

‘ours ‘0.7816 0.9655 0.6428 0.9836 0.7330‘ 0.7360 0.9686 0.5834

Table 2: Generalization comparison on DSCA Dataset.

Type |Method | DSC  Acc  IOU AUC  dDice [DSCunin Accinin I0Usnin
VSS-Net [7] 0.6464 0.9742 0.4862 0.9101 0.6596 | 0.5233 0.9767 0.3824
task specific 3D-UNet [11] 0.7077 0.9739 0.5514 0.9790 0.5990 | 0.6394 0.9795 0.5706
ST-UNet [13] 0.7286 0.9762 0.5766 0.9878 0.6265| 0.6623 0.9789 0.5756
MedSAM [8] 0.6055 0.9682 0.4375 0.9486 0.4062| 0.4391 0.9740 0.3191
SAM-based 2D SAM-Med2D [1] 0.6337 0.9679 0.4678 0.9577 0.4920 | 0.5580 0.9737 0.4665
Med-SA [15] 0.6660 0.9702 0.5032 0.9660 0.5460 | 0.5948 0.9747 0.5212
VP-SAM [3] 0.5151 0.9622 0.3500 0.9363 0.3249 | 0.4242 0.9654 0.3211
MedSAM2 [22] 0.7286 0.9721 0.5753 0.9837 0.6341| 0.6661 0.9766 0.6009
SAM-based temporal _
SAM-+ST-Adapter [9]| 0.7241 0.9748 0.5703 0.9858 0.6342 | 0.6505 0.9769 0.6088
MediViSTA-SAM [5] | 0.7392 0.9771 0.5896 0.9882 0.6385 | 0.6640 0.9788 0.5865

ours ‘0.7476 0.9779 0.6044 0.9933 0.6596| 0.6817 0.9800 0.6281

the advanced complementary information fusion module, and the effective inte-
gration of SAM’s inherent design advantages. Furthermore, the 2D variant of
SAM exhibits significantly inferior performance, underscoring the critical role
of temporal information in DSA sequences. Notably, our approach surpasses ex-
isting SAM-based temporal methods, demonstrating superior capability in both
temporal information utilization and contextual feature extraction.

Qualitative results, as shown in Fig. 3, visually demonstrate TemSAM’s per-
formance advantages over other methods. TemSAM effectively preserves vascular
connectivity and enhances the detection of thin vessels in low-contrast regions.
Meanwhile, TemSAM achieves an optimal balance between false positives and
false negatives, demonstrating remarkable robustness in challenging clinical sce-
narios (1 row).

Effectiveness of each component in TemSAM. We conducted ablation
studies by incrementally integrating each component (i.e. Dual-Branch Encoder
(DBE), MGA Module, and MCTA Module) into the backbone. Additionally, we
compare our Local-Global Fusion (LGF) strategy backbone with the Global Fu-
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Fig. 3: Qualitative comparison results of cerebrovascular segmentation in DSA
sequences. The white, green, and red denote the true positive, false positive, and
false negative, respectively. Enlarged local viewing for better clarity.

sion (GF) strategy, which inputs the entir DSA sequence and directly outputs
one final segmentation map. The results demonstrate that the LGF strategy
preforms superior to GF strategy. This superiority can be attributed to the local
video clip’s ability to integrate local temporal information. In contrast, a global
views may miss certain vessels only visible for a short time. Meanwhile, incorpo-
rating any single component of TemSAM significantly enhances the segmentation
performance. Notably, combining all components achieve the optimal segmenta-
tion accuracy, especially for thin vessels ( DSCypin+1.92%, Accipin+0.16%, and
I0Upin+2.32% ).

Table 3: Ablation study on different component combinations of TemSAM.
DBE MGA MCTA| DSC ~ Acc 10U  AUC  cIDice |DSCinin Accinin I0Usnin
GIO Backbone ‘0.7593 0.9571 0.6003 0.9819 0.7079‘ 0.7019 0.9612 0.5418

X X X 10.7702 0.9644 0.6276 0.9839 0.7068 | 0.7168 0.9670 0.5602
v X X |0.7748 0.9633 0.6335 0.9834 0.7266 | 0.7285 0.9665 0.5740
v v X |0.7755 0.9634 0.6342 0.9834 0.7277| 0.7300 0.9665 0.5759
v v v ‘0.7816 0.9655 0.6428 0.9836 0.7330‘ 0.7360 0.9686 0.5834

4 Conclusion

We propose TemSAM, a novel framework for cerebrovascular segmentation in
DSA sequences that fully leverages the MIP’s global structural information and
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complementary frames’ temporal information. By introducing a multi-level MIP
global prompt and a complementary information fusion module, TemSAM adap-
tively refines segmentation through structural priors encoded from the MIP im-
age while aggregating contextually complementary information to enhance fea-
ture extraction. Experimental results demonstrate that TemSAM significantly
outperforms existing methods.
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