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Abstract. To reduce radiation exposure and improve the diagnostic effi-
cacy of low-dose computed tomography (LDCT), numerous deep learning-
based denoising methods have been developed to mitigate noise and arti-
facts. However, most of these approaches ignore the anatomical semantics
of human tissues, which may potentially result in suboptimal denoising
outcomes. To address this problem, we propose ALDEN, an anatomy-
aware LDCT denoising method that integrates semantic features of pre-
trained vision models (PVMs) with adversarial and contrastive learning.
Specifically, we introduce an anatomy-aware discriminator that dynami-
cally fuses hierarchical semantic features from reference normal-dose CT
(NDCT) via cross-attention mechanisms, enabling tissue-specific real-
ism evaluation in the discriminator. In addition, we propose a semantic-
guided contrastive learning module that enforces anatomical consistency
by contrasting PVM-derived features from LDCT, denoised CT and
NDCT, preserving tissue-specific patterns through positive pairs and
suppressing artifacts via dual negative pairs. Extensive experiments con-
ducted on two LDCT denoising datasets reveal that ALDEN achieves the
state-of-the-art performance, offering superior anatomy preservation and
substantially reducing over-smoothing issue of previous work. Further
validation on a downstream multi-organ segmentation task (encompass-
ing 117 anatomical structures) affirms the model’s ability to maintain
anatomical awareness.

Keywords: Anatomy-aware low-dose CT denoising · Pre-trained vision
models · Semantic-guided contrastive learning.

1 Introduction

Low-dose computed tomography (LDCT) has become an important and popular
diagnostic tool for reducing radiation exposure risks; however, its clinical utility
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is hindered by the amplified noise and artifacts that degrade anatomical fidelity.
Deep learning advances of convolutional neural networks [6,31], transformer [21],
and diffusion models [8], have improved LDCT denoising, these methods share a
common limitation: pixel-level constraints (e.g., L1/MSE losses) prioritize global
error reduction at the expense of local anatomical plausibility, often resulting in
oversmooth textures that obscure small tissues and subtle pathologies [29].

Generative adversarial networks (GANs) offer an alternative by learning data
distributions rather than pixel-wise mappings [9,23,22]. However, conventional
GAN-based LDCT denoising methods [11,25] often do not capture the important
relationship between noise characteristics and anatomical semantics, as noise
levels in CT images differ depending on tissue type [18,6]. Recent work also
highlights the need for image understanding in restoration to improve the ex-
plainability and clinical application of medical imaging [20,14,6,5]. This calls for
a shift towards fine-grained anatomy-aware denoising, where semantic consis-
tency is crucial for effective texture restoration.

Integrating anatomical semantics into denoising models presents challenges
since conventional task-specific segmentation networks [27,10] require costly and
precise anatomical annotations, limiting generalizability across a large number
of diverse anatomies. Progresses in foundation models [19,28] demonstrate that
pretrained vision models (PVMs) pretrained on large-scale datasets possess ex-
ceptional transfer learning capability for semantic understanding. PVMs offer
two key advantages: (1) their exposure to millions of natural images allows the
development of rich hierarchical feature representations that capture universal
texture and structure patterns, which can be adapted to the medical image
domain [2,32,1,17]; and (2) unlike segmentation networks requiring predefined
anatomical labels, PVMs generate semantic features without explicit supervi-
sion, enabling the discovery of latent anatomical relationships essential for fine-
grained denoising.

Inspired by this, we present ALDEN (Anatomy-aware LDCT DENoising
framework), which integrates PVMs within a GAN architecture for enhanced
anatomy-aware restoration. ALDEN features an anatomy-aware discriminator
that utilizes hierarchical semantic features extracted from reference NDCT via
PVMs, guiding adversarial learning to concentrate on tissue-specific semantics.
This differentiates it from previous GAN-based LDCT denoising methods that
evaluate all anatomical structures uniformly. Additionally, we propose a seman-
tically guided contrastive paradigm that uses PVM-extracted features to en-
force anatomy-aware consistency. Positive pairs align features from correspond-
ing anatomical regions in denoised CT and NDCT, while negative pairs include
features from denoised CT and LDCT at the same location to emphasize noise,
and from denoised CT and NDCT at mismatched locations to penalize anatom-
ical misalignment. The InfoNCE loss [4] is utilized to minimize the distances
between positive pairs and maximize the separation from negative pairs.

Our contributions are summarized as follows. 1) We first propose the inte-
gration of PVMs into LDCT denoising, uniquely combining PVMs with adver-
sarial and contrastive learning approaches. 2) We introduce an anatomy-aware
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discriminator that dynamically incorporates hierarchical semantic features from
NDCT to enable a fine-grained semantic-aware LDCT denoising. 3) We present a
semantically guided contrastive learning module to maintain anatomical consis-
tency through positive pairs while reducing noise and artifacts with dual negative
pairs. 4) Extensive experiments on two LDCT denoising datasets demonstrate
that ALDEN achieves the state-of-the-art denoising performance, delivering en-
hanced texture preservation and avoiding over-smoothing. Further validation on
a downstream multi-organ segmentation task with 117 anatomical structures
demonstrates the effectiveness of our anatomy-aware denoising approach.

2 Methodology

2.1 Overview of ALDEN

Conventional GAN-based LDCT denoising frameworks [11,25] employ a generator-
discriminator architecture to enhance perceptual quality. Let X ∼ PX denote
LDCT inputs and Y ∼ PY their NDCT counterparts. The generator (i.e., denois-
ing network) G produces denoised outputs Ŷ = G(X), optimized through two ob-
jectives: 1) Pixel fidelity via pixl-wise supervised loss. Here, L1 loss is employed,
which is expressed as L1 = ∥Ŷ − Y ∥1. 2) Distribution alignment via adversarial
learning. The discriminator D differentiates between real NDCT images Y and
generated/denoised outputs Ŷ . Simultaneously, the generator G is encouraged
to produce realistic denoised CT Ŷ that can effectively compete with the dis-
criminator. The G and D form a two-player minimax game, optimized through
adversarial loss defined as Ladv = EY∼PY

[logD(Y )]+EX∼PX
[log(1−D(G(X)))].

As illustrated in Fig. 1 (left), our ALDEN framework extends the traditional
GAN-based LDCT denoising model by introducing two key components: the
Anatomy-Aware Discriminator (AAD) and Semantic-guided Contrastive Learn-
ing (SCL). The AAD leverages NDCT-derived semantic features extracted from
PVMs as conditional input. Let Ψ represent the PVMs, the goal is to align con-
ditional distributions: P (Ŷ |Ψ(Y )) ≈ P (Y |Ψ(Y )), facilitating detailed anatomy-
aware texture restoration. In contrast, conventional discriminators operate only
on marginal distributions: P (Ŷ ) ≈ P (Y ), potentially overlooking essential se-
mantic content. The SCL component utilizes features extracted by PVMs to en-
force anatomy-aware consistency through contrastive learning. It achieves this
by forming positive pairs to preserve tissue-specific patterns and dual negative
pairs to suppress noise and artifacts. More details on AAD can be found in
Section 2.2, while the formalization of SCL is presented in Section 2.3.

2.2 Anatomy-Aware Discriminator

The AAD aims to achieve fine-grained semantic-aware denoising through adver-
sarial learning. Inspired by [14], we propose an Attention-based Feature Fusion
(AFF) module that integrates hierarchical semantic priors from the reference
NDCT Y using PVMs. As shown in Fig. 1 (left), our multi-level AFF operates
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Fig. 1. Overview of the proposed ALDEN (Anatomy-aware LDCT DENoising) frame-
work, which integrates the Anatomy-Aware Discriminator (AAD) for fine-grained tex-
ture restoration and Semantic-guided Contrastive Learning (SCL) for enhanced noise
suppression.

across the feature hierarchies of both the PVM and the discriminator, providing
progressive semantic guidance. To enhance the quality of semantic priors, we
also explore advanced PVMs such as DINOv2 [19] and MedSAM [15], which are
the state-of-the-art pretrained vision models in the fields of natural and medical
images, offering robust semantic feature extraction capabilities.

Given the NDCT Y , we extract hierarchical semantic features from a fixed
PVM at three levels: low (al), middle (am), and high (ah). Both MedSAM and
DINOv2 use the ViT-base architecture with 12 transformer blocks. Although
ViT doesn’t explicitly change scales, features from different layers are analogous
to CNNs: early layers focus on low-level features, while later ones concentrate on
high-level semantics [7]. We use outputs from the 4th, 8th, and 12th transformer
blocks as low-, mid-, and high-level features, respectively. At the same time,
when the denoised CT Ŷ or the NDCT Y is the input to the discriminator D, it
generates the corresponding hierarchical discriminative features, i.e., fl, fm and
fh at these levels. Then multiple AFF modules are used to align the features
f∗ (where ∗ ∈ l,m, h) with the semantic features a∗ before passing them to the
discriminator. This process guides the discriminator to focus on semantically
relevant texture distributions.

As shown in Fig. 1 (bottom right), the AFF module begins by standardizing
the semantic features a∗ through group normalization, followed by a projection
layer with a 1 ∗ 1 convolution. After permutation and layer normalization, we
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derive the query Q, key K, and value V . The self-attention outputs a′∗ are
computed as:

a′∗ = Softmax(Q ·KT /
√

dk) · V, (1)

where dk is the scale factor. This output a′∗ is normalized to produce the query Q′

for the cross-attention mechanism. The feature f∗ undergoes a similar projection
and permutation process to become the key K ′ and the value V ′. Then we
can obtain the cross-attention results f ′

∗ using Equation 1. Finally, the fused
anatomy-aware feature representation fa

∗ is computed as follows:

fa
∗ = Concat(PL(Permute(GELU(LN(f ′

∗)))), f∗). (2)

Here, GELU , PL, and LN are the Gaussian Error Linear Units, projection layer
and layer normalization, respectively.

2.3 Semantic-guided Contrastive Learning

The SCL component of the ALDEN framework utilizes a pretrained vision model
to improve LDCT denoising by ensuring anatomical consistency between de-
noised CT and reference NDCT. As depicted in Fig. 1 (top right), the feature
representation FX , FŶ and FY are derived from the fixed PVM using input
X, Ŷ and Y , respectively. Here, FX , FŶ and FY ∈ RB×C×H×W , where B, C,
H and W represent batch size, channel depth, height, and width of the fea-
tures, respectively. Then, SCL operates contrastive learning on these features,
explicitly aligning denoised CT features with NDCT references while contrasting
against two types of negative samples: residual noise patterns from LDCT and
anatomically discordant NDCT features.
Positive Pair Alignment. For each denoised CT image, we establish anatom-
ical correspondence with its NDCT counterpart through spatially aligned fea-
ture pairs. Let FŶ (x, y) ∈ RC and FY (x, y) ∈ RC denote the PVM-derived
feature vectors at the spatial coordinate (x, y) in the i-th batch sample. We ran-
domly sample K coordinates per image, constructing positive pairs from identi-
cal anatomical locations, i.e., P = {(F (i)

Ŷ
(xik, yik)), F

(i)
Y (xik, yik)}B,K

i=1,k=1, where
(xik, yik) represents randomly selected positions. This alignment ensures that the
denoised output preserves anatomical structures observed in the NDCT ground
truth.
Dual Negative Sampling Strategy. We design two complementary nega-
tive sampling mechanisms: 1) same-location LDCT negatives capture resid-
ual noise by contrasting denoised features against their LDCT counterparts
at identical coordinates, i.e., N1 = {(F (i)

Ŷ
(xik, yik)), F

(i)
X (xik, yik)}B,K

i=1,k=1. 2)
Cross-location NDCT negatives penalize anatomical misalignment by pairing
denoised features with NDCT features from spatially discordant regions M ,
i.e., N2 = {(F (i)

Ŷ
(xik, yik)), F

(i)
Y (x̃

(m)
ik , ỹ

(m)
ik )}B,K,M

i=1,k=1,m=1, where {(x̃(m)
ik , ỹ

(m)
ik )}

are random-sampled coordinates excluding (xik, yik).
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Loss Formulation. The SCL loss adapts the InfoNCE [4] to optimize feature
similarities:

Lscl = − 1

B ·K
∑
i,k

log
exp(sposik /τ)

exp(sposik /τ) + exp(sneg1ik /τ) +
∑M

m=1exp(s
neg2
ikm /τ)

, (3)

where the temperature τ = 0.1 and the similarity scores are computed as
sposik =

〈
F

(i)

Ŷ
(xik, yik), F

(i)
Y (xik, yik)

〉
, sneg1ik =

〈
F

(i)

Ŷ
(xik, yik), F

(i)
X (xik, yik)

〉
and

sneg2ikm =
〈
F

(i)

Ŷ
(xik, yik), F

(i)
Y (x̃

(m)
ik , ỹ

(m)
ik )

〉
, respectively. Here, ⟨·, ·⟩ denotes cosine

similarity, and the loss simultaneously maximizes positive pair alignment while
repelling both negative types. The overall objective function of the proposed
ALDEN is as follows:

L = L1 + λ1Ladv + λ2Lscl, (4)

where {λ1, λ2} are parameters controlling the relative weights of different losses,
which are empirically set as {0.01, 0.5}.

3 Experiments and Results

3.1 Experimental Setup

Denoising Datasets. We evaluate our method using two datasets. Mayo2016
dataset [16] consists of 2,378 CT slices from ten anonymized patients, each of
which has paired low-dose (quarter-dose) and normal-dose scan. Consistent with
the data split protocol of previous studies [8,21], we select slices from nine pa-
tients for training and slices from one patient for testing. The second dataset is a
collection of CT scans from multiple centers, referred to as the Multi-center CT
Denoising (MCTD) dataset. Normal-dose CT scans were acquired from diverse
clinical sites, while the corresponding low-dose CT scans were generated using a
simulation algorithm [26]. The dataset consists of 1,276 paired scans for training
and 88 paired scans for validation. For both datasets, 2D slices were extracted
from the axial plane with a resolution of 512×512 pixels for model training and
validation.

We employ four metrics for denoising evaluation: peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM), root mean square error
(RMSE) and a perceptual metric, i.e., learned perceptual image patch similarity
(LPIPS) [30], to assess image quality.
Segmentation Dataset. We further evaluate the denoising performance on a
downstream multi-organ segmentation task. Specifically, the TotalSegmentator
[24] test set is used, which includes 89 CT scans with 117 organ types. To sim-
ulate LDCT data with varying noise levels, we follow the methodology in [26]
to generate LDCT with low and high noise conditions. Then different denoising
algorithms are applied to restore the simulated LDCT, after which we use the
nnUNet [12] trained on the original CT in the TotalSegmentator training set to
predict organ masks and calculate the mean Dice similarity coefficient (DSC) of
all organs.
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Table 1. Quantitative comparison of different methods on the Mayo2016 and MCTD
datasets.

Methods Mayo2016 dataset MCTD dataset
PSNR↑ SSIM↑ RMSE↓ LPIPS↓ PSNR↑ SSIM↑ RMSE↓ LPIPS↓

RED-CNN [3] 32.32 0.9227 9.87 0.0235 37.81 0.9069 50.11 0.0535
DU-GAN [11] 32.64 0.9278 9.56 0.0198 38.52 0.9075 43.33 0.0291
SeD [14] 32.87 0.9283 9.32 0.0201 39.43 0.9157 40.78 0.0304
CTformer [21] 33.16 0.9287 8.98 0.0235 38.97 0.9134 40.54 0.0458
CoreDiff [8] 33.61 0.9342 8.58 0.0227 40.46 0.9290 34.40 0.0474
ASCON [6] 33.60 0.9318 8.57 0.0242 40.58 0.9278 34.43 0.0657
ALDEN-MedSAM 33.59 0.9343 8.56 0.0192 40.51 0.9281 34.86 0.0273
ALDEN-DINOv2 33.71 0.9341 8.44 0.0176 40.57 0.9296 34.37 0.0265

Implementation Details. The generator utilized in our study is the ESAU-
Net as introduced in [6]. The basic discriminator we used is a popular patch-wise
discriminator [13] that consists of five convolutional layers. The proposed AAD
incorporates the AFF within the middle three convolutional layers. The sampling
hyperparameters K and M in the SCL module are empirically set to 256 and
32, respectively. Our experiments are conducted on an NVIDIA H20 GPU with
96 GB of memory using the PyTorch framework. We optimize our network with
the Adam optimizer, utilizing a batch size of 8 and a learning rate of 1e-4. The
optimization process is carried out for a total of 300,000 iterations.

3.2 Experimental Results

Comparison with Previous State-of-the-Art Methods. We implement two
ALDEN variants based on different PVMs: ALDEN-MedSAM and ALDEN-
DINOv2. These variants are compared against six state-of-the-art denoising
methods with diverse network architectures, including GAN-based (DU-GAN
[11] and SeD [14]), CNN-based (RED-CNN [3] and ASCON [6]), Transformer-
based (CTformer [21]) and Diffusion-based (CoreDiff [8]).

Table 1 reveals an inherent trade-off between fidelity metrics (PSNR, SSIM,
RMSE) and perceptual quality (LPIPS) in previous work. For example, on the
Mayo2016 dataset, DU-GAN achieves a competitive LPIPS score of 0.0198 but
underperforms in fidelity with an RMSE of 9.56, compared to 8.57-8.58 for AS-
CON and CoreDiff. Conversely, CoreDiff and ASCON exhibit superior fidelity
(PSNR: 33.60-33.61 dB) but have higher LPIPS values (0.0227-0.0242), indi-
cating a decline in perceptual quality. In contrast, the ALDEN variants, espe-
cially ALDEN-DINOv2, effectively balance these objectives. From the Mayo2016
dataset, ALDEN-DINOv2 achieves a new state-of-the-art result, reporting a
PSNR of 33.71 dB, an RMSE of 8.44, and an LPIPS of 0.0176, along with a com-
petitive SSIM of 0.9341. In MCTD dataset, it maintains its superiority, leading
in SSIM (0.9296), RMSE (34.37) and LPIPS of 0.0265, indicating a 44.1-59.7%
reduction compared to CoreDiff and ASCON. These results confirm ALDEN’s
ability to harmonize fidelity and perceptual quality through PVM guidance. Fig.
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Fig. 2. Qualitative assessment of different methods on the Mayo2016 dataset. The
display window is [−160, 240] HU.

Table 2. Ablation study results on the Mayo2016 dataset.

Methods AAD SCL PSNR↑ SSIM↑ RMSE↓ LPIPS↓
Baseline - - 32.70 0.9291 9.51 0.0206
AAD-DINOv2 ✓ - 33.60 0.9348 8.57 0.0186
SCL-DINOv2 - ✓ 33.41 0.9330 8.74 0.0123
ALDEN-DINOv2 ✓ ✓ 33.71 0.9341 8.44 0.0176

2 presents the qualitative results of various methods applied to the Mayo2016
dataset. As shown, the proposed ALDEN-MedSAM and ALDEN-DINOv2 stand
out by effectively preserving intricate textural details while maintaining excep-
tional noise reduction, leading to results that closely resemble the NDCT image.
Ablation Studies. Table 2 showcases the ablation results of ALDEN-DINOv2
in the Mayo2016 dataset, highlighting the roles of AAD and SCL in improving
the performance of LDCT denoising. It is observed that incorporating AAD no-
tably enhances PSNR, SSIM, RMSE and LPIPS as compared to the baseline
model. Applying SCL independently produces improvements in these metrics,
particularly in LPIPS, likely due to PVMs’ efficacy as perceptual feature extrac-
tors. The combination of AAD and SCL delivers the best performance, achiev-
ing a PSNR of 33.71, RMSE of 8.44, and maintaining balanced results in SSIM
(0.9341) and LPIPS (0.0176), highlighting the effectiveness of integrating these
components to enhance denoising fidelity and maintain perceptual quality.

Table 3. Quantitative comparison of different denoising methods on DSC (%) for
downstream multi-organ segmentation tasks.

Noise level LDCT RED-CNN DU-GAN SeD CTformer CoreDiff ASCON ALDEN-DINOv2
Low 87.54 88.22 88.74 88.68 88.53 89.06 88.94 89.20
High 75.74 78.14 78.01 79.37 78.96 79.99 79.60 81.06
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Downstream Task Evaluation. We evaluate the performance of the proposed
ALDEN-DINOv2 for multi-organ segmentation as downstream task. As shown
in Table 3, our method consistently achieves the best segmentation performance
in both low- and high-noise scenarios, with DSC values of 89.20% and 81.06%,
respectively. Especially in the high-noise scenario, our method substantially out-
performs the second-best CoreDiff by a mean DSC of 1.07% across 117 anatomi-
cal structures. These results demonstrate that our approach effectively improves
anatomical perception and enhances segmentation performance.

4 Conclusion

In conclusion, we present ALDEN that combines pretrained vision models with
adversarial and contrastive learning techniques for anatomy-aware low-dose CT
denoising. The framework features an anatomy-aware discriminator for fine-
grained denoising and a semantic-guided contrastive learning module to en-
hance anatomical consistency. Extensive experiments demonstrate that ALDEN
achieves state-of-the-art performance, improving texture preservation while re-
ducing over-smoothing. Validation on a multi-organ segmentation task with 117
anatomical structures underscores the model’s robust anatomical awareness.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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