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Abstract. Open-source datasets play a crucial role in data-centric Al,
particularly in the medical field, where data collection and access are
often restricted. While these datasets are typically opened for research or
educational purposes, their unauthorized use for model training remains
a persistent ethical and legal concern. In this paper, we propose PRADA,
a novel framework for detecting whether a Deep Neural Network (DNN)
has been trained on a specific open-source dataset. The main idea of
our method is exploiting the memorization ability of DNN and designing
a hidden signal—a carefully optimized signal that is imperceptible to
humans yet covertly memorized in the models. Once the hidden signal is
generated, it is embedded into a dataset and makes protected data, which
is then released to the public. Any model trained on this protected data
will inherently memorize the characteristics of hidden signals. Then, by
analyzing the response of the model on the hidden signal, we can identify
whether the dataset was used during training. Furthermore, we propose
the Exposure Frequency-Accuracy Correlation (EFAC) score to verify
whether a model has been trained on protected data or not. It quantifies
the correlation between the predefined exposure frequency of the hidden
signal, set by the data provider, and the accuracy of models. Experiments
demonstrate that our approach effectively detects whether the model is
trained on a specific dataset or not. This work provides a new direction
for protecting open-source datasets from misuse in medical Al research.

Keywords: Dataset protection - dataset watermarking - memorization.

1 Introduction

Open-source datasets play an important role in the advancement of data-centric
Al particularly in fields like medical imaging, where data collection is often
constrained by privacy regulations and limited accessibility. These datasets en-
able researchers to develop, validate, and benchmark new deep learning models,
accelerating scientific progress. While many open-source datasets are provided
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Fig. 1. A graphical overview of the process for generating protected data and the
probing scheme. If a model correctly predicts the hidden signal, we can determine
whether it was trained on hidden signal-embedded data.

explicitly for research and educational purposes, their unauthorized usage in
commercial applications still persists. Some companies and organizations often
exploit these datasets for profit without proper attribution or permission, vio-
lating the intended usage policies. Given the sensitive nature of medical data,
ensuring proper dataset attribution and ethical compliance is more critical than
ever. This growing issue highlights the necessity for a verification framework
to determine whether a trained model has used a specific dataset, safeguarding
ethical AI development in the medical domain.

However, analyzing a trained model is inherently challenging due to its high
computational complexity and complex decision-making processes [19,8|. This
challenge is further exacerbated when the model is not publicly available and
only provides its output, a scenario known as the black-box setting [22]|. For
example, the network architecture, weight parameters, and internal feature rep-
resentations remain unknown, making direct inspection impossible. Therefore,
probing whether a model has been trained on a specific dataset is challenging.

In recent years, numerous studies have focused on protecting dataset copy-
right and data privacy, with many approaches extending adversarial attack tech-
niques. Methods such as backdoor attacks for classification task [7,20, 14, 25,
13] and data poisoning [23, 11,1, 6] detect dataset misuse by monitoring model
degradation under specific conditions. However, these approaches pose signifi-
cant challenges for medical datasets, where even minor model malfunctions can
lead to critical consequences.

Beyond adversarial-based methods, some studies have explored verification
approaches that rely on the correct functioning of trained models. Jang et al.
[12] introduced Undercover Bias, which leverages data bias—typically seen as a
drawback—for dataset watermarking and unauthorized use detection by embed-
ding ground-truth-sharing biases. While effective, this method has two major
limitations: (1) its dependence on generalization ability, which is unnecessary
for copyright protection, (2) its strong reliance on the number of categorical
classes in the dataset, limiting its applicability to small-scale datasets, and (3)
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its vulnerability under class-imbalanced conditions which are prevalent in med-
ical field.

In this paper, we propose PRADA, a novel two-step verification framework
for PRotecting And Detecting dataset Abuse in open-source medical datasets.
Our method builds on and extends Jang et al. [12] by leveraging the memo-
rization tendency of deep neural networks (DNNs) [4,2]. Instead of relying on
generalization, we embed hidden signals using a small set of samples and verify
dataset misuse by assessing memorization ability of the model on these signals.
To enable verification independent from the number of classes, we introduce
Exposure Frequency-Accuracy Correlation (EFAC), which measures the corre-
lation between predefined sample exposure frequency and model performance.
By intentionally controlling the hidden signal distribution, we hypothesize that
models will respond more strongly to frequently embedded signals. Comparing
the performance of each signal against this distribution provides an additional
verification layer beyond simple hidden bias detection, enhancing reliability even
in datasets with limited and imbalanced classes. Figure 1 illustrates the overall
concept of the proposed framework. As shown in the figure, we first generate a
hidden signal from internally collected data. This signal is then embedded into
the collected dataset according to predefined exposure frequency, producing pro-
tected data, which is subsequently released to the public. A model trained on
raw data makes incorrect predictions and a low EFAC score with hidden signals,
whereas a model trained on protected data successfully recognizes and has a
high EFAC score with hidden signals.

Our contributions can be summarized as follows: (1) We propose a novel
framework to protect and detect dataset abuse for open-source medical datasets
that have a small number of classes and imbalanced class distributions. (2) We
employ the memorization properties of DNN to generate a reliable hidden sig-
nal with few samples. (3) We introduce a novel verification metric that probes
whether the model is trained on a specific dataset or not. (4) Our approach
enables protected data to be generalized across various model architectures, en-
suring broad applicability. Additionally, the hidden signal can be customized for
different tasks, including classification and segmentation, making our method
generally applicable.

2 Method

2.1 Memorization Ability rather than Generalization Ability

In the Undercover Bias [12], invisible hidden biases are embedded within the
protected dataset, so that a model trained on this dataset can work with only
the hidden bias even without any target data allowing verification. However,
a key limitation is that verification was done using unseen data (including the
bias attributes), which the model did not encounter during training. While this
method can provide robust proof of dataset misuse, it also requires embedding
sufficiently diverse hidden biases that are trained to be highly generalizable. This
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Fig. 2. Hierarchical performance caused by the intentional asymmetric occurrence.

requirement of sufficient diversity can be a significant challenge for small-scale
datasets, such as many medical datasets.

According to Chu et al. [4], supervised learning tends to memorize rather
than generalize. Motivated by this, we redesign the prior Undercover Bias [12]
to (1) use only a few hidden data per class for generating hidden signal, and
(2) verify the model via its memorization of these seen hidden signals during
training. By limiting the range of hidden data and measuring accuracy directly
on these covertly trained watermark samples, we reduce the risk of harming the
original task performance while still ensuring effective verification.

2.2 Employing Data Imbalance to Data Privacy Protection

In [12], verification reliability depends on the number of classes. They adopted
100 x m% for hidden signal classification accuracy as their threshold, but
it becomes less reliable with fewer classes. In binary classification/segmentation,
the threshold is defined as 100%, making verification impractical, as every hidden
signal must be perfectly classified to prove dataset misuse. Moreover, since it
embeds the hidden signals uniformly across the entire dataset, it is less effective
when the class distribution is imbalanced.

To address this limitation, we leverage an often detrimental factor in conven-
tional training: data imbalance. When a dataset is imbalanced, certain categories
dominate, causing the model to become overly biased toward these frequent sam-
ples and degrading its overall performance [16, 10, 15] as Figure 2. We intention-
ally induce this behavior in our hidden signal embedding strategy by limiting the
number of hidden data and imposing a hierarchical distribution among them.
Basically, our hidden signal embedding process can be described as:

&; = Signal Embedding(xz;, h;), and s; = T; — x;, (1)

where Z;,x;, h;, s; denote the i-th protected data, raw data, hidden data, and
hidden signal. Here, Z; appears nearly identical to z;. We employed DNN-based
steganography [18,3,27] as Signal Embedding(-,-). The watermark signal was
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defined as the residuals between the steganography output and the clean data.
Basically, each pair of x and h is matched based on the class ID, regardless of
their physical semantics. Also, we applied the following non-uniform distribution
to hidden data selection:

Pr(ho) < Pr(hy) <...< Pr(hy), (2)

where Pr(-) represents the occurrence probability of that particular hidden data
during embedding, and IV denotes the number of hidden signals. This asymmetric
distribution encourages the model to memorize the more frequently presented
hidden signal while remaining less sensitive to the underrepresented ones.

2.3 Verification

We use two primary verification metrics. The first, model performance on hidden-
signal-only data, follows [12] but with a simpler data selection. Instead of using
fully unseen signals from a large hidden data pool (as in Undercover Bias), we
embed only a few hidden samples into the target dataset. These minor variations
enhance verification by: (1) simplifying the hidden task, (2) yielding higher met-
ric values for robustness, and (3) leveraging memorization over generalization.
EFAC Score. As our second metric, we introduce the EFAC score, which is
independent of the number of classes. We define two variables, normalized oc-
currence frequency (NOF) and normalized model Accuracy (NMA):

SN Pr(hy) — ppr
VEN(Pr(h) — pey)?

NOF = : (3)

and
Zfil ACC(SZ' + ,U/dataset) — HAce

\/22111 (ACC(Si + ,udataset) - /’('Acc)

NMA = , (4)

2

where

gl 1 & 1 &
Mdataset = T<7 T,y HPr = = P’I"(hl), HAce = =7 ACC(Si).
I 2 P> v

Here, Acc(-) is the accuracy of the model on the corresponding hidden sig-
nals. These two variables indicate normalized vectors after zero centering of
pre-defined sample-specific occurrence frequency and the model performance
on the corresponding hidden signals. After, we calculated their correlation as
EFAC := NOF - NMA. This correlation measures the alignment between the
predefined frequency and performance per hidden data. Our verification follows
a two-step process based on these metrics.
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Table 1. Verification results on two network architectures with three medical classifi-
cation benchmarks.

Training Backbone: PVT-v2 Backbone: MobileNet-v2
Data Test  Verifiability Test  Verifiability
Accuracy (mAcc) EFAC Accuracy (mAcc) EFAC

RetinaMNIST

Raw Data 60.654+1.07 20.22+3.60 -0.21164+0.0964|48.44+9.37 28.174+2.15 0.028340.1853

Undercover [12][58.40+£2.68 70.92+6.40 -0.1633+0.0813|46.87+1.20 54.554+7.42 -0.031940.1183

Ours 59.15+2.50 94.37+1.98 0.5820+0.0895 [46.25+4.58 81.86+10.11 0.2994+0.1289
DermaMNIST

Raw Data 85.944+0.60 14.36+0.43 0.1359+0.0859 [84.79+0.69 12.66+1.41 0.0098+0.0891

Undercover [12](81.93+£0.76 35.50+6.43 0.1021£0.0949 |82.914+0.73 42.89+7.76 -0.035840.0709

Ours 81.33+0.67 88.43+3.11 0.6198+0.0373 [83.14+£0.42 29.914+4.31 0.26054+0.0641
BloodMNIST

Raw Data 99.134+0.02 12.64+0.78 -0.0970+0.1066{89.03+£0.11 13.19£0.56 -0.0313=£0.1550

Undercover [12](98.90+£0.06 31.02+6.79 -0.0208+0.1010|97.30+0.44 29.7947.17 -0.059440.0603

Ours 98.924+0.09 34.87+8.30 0.3583+0.1454 [97.91+£0.26 34.984+6.85 0.252540.0174

3 Experiments

3.1 Experiment Setting

Classification Task: For classification task evaluation, we used subsets of
MedMNIST v2 [29], a collection of 12 lightweight medical image datasets. Specif-
ically, RetinaMNIST, DermaMNIST, and BloodMNIST were used for training
and validation, while OrganMNIST provided the hidden signal, embedded in
50% of the training set. For each class in the target datasets, four OrganMNIST
samples with the same class ID were randomly selected. For example, samples
from the first class of RetinaMNIST were paired with one of the four samples
chosen from the first class of OrganMNIST. The occurrence probability was set
as [0.1%,0.23,0.33,0.4%], meaning the most frequently chosen sample appeared 64
times more often than the least frequent one. We employed ImageNet-pretrained
PVT-v2 [26] and MobileNet-v2 [21] as model architectures.

Segmentation Task: For segmentation task, we used the Drishti [24], ORIGA
[30], RIM-ONE 13 [5], and REFUGE [17] datasets for optic cup (OC) and optic
disk (OD) segmentation. FashionMNIST [28] provided the hidden signal, em-
bedded in 50% of the REFUGE training set. Four randomly selected samples
per class were used for watermarking, with FashionMNIST serving as the hid-
den dataset. Each FashionMNIST image was downsampled and tiled across seg-
ments. In this case, [0.01, 0.08, 0.27, 0.64] was applied to enforce an asymmetric
occurrence. SWinUNETR [9] was used for segmentation.

3.2 Probing Models for Dataset Usage Verification

Verification for Classification Task: Following the verification protocol in
[12], we assess the model using Harmlessness, Verifiability, and EFAC in
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Table 2. Verification results on segmentation task.

Training Test Data (DSC) Verifiability EFAC
Data Drishti | ORIGA |RIM ONE REFUGE (DS©C)
Raw Data 91.4244.71{91.63£3.05|79.24420.73(93.23+5.25| 59.21+12.24 | 9.53+10.11

Undercover 91.87+3.53|92.32£2.70|77.28+19.78|91.66+5.50| 68.62+11.73 |38.70+12.14
PRADA (ours)|92.61+3.64|92.5242.69|76.35+21.87|91.00+4.90| 69.51+£11.83 | 93.96+7.03

Input GT Predicted Input GT Predicted

Hidden SIgnal Raw Test

Fig. 3. Qualitative examples from the segmentation task. The bottom-left shows the
least learned signal, while the bottom-right represents the most learned case.

addition. Harmlessness is evaluated by test accuracy. Verifiability is assessed via
mean class accuracy on the hidden signal. To measure EFAC, we embedded four
distinct hidden-signal sets across the training data and evaluated the model’s
accuracy on each. As expected, accuracy was highest for the most frequently
embedded signals and decreased for the least exposed ones. We quantified this
relationship using correlation, where higher values indicate stronger alignment,
while lower or negative values means misalignment.

Table 1 presents the verification results. We measured test accuracy between
models trained on raw and protected data (Undercover [12] or Ours). For the
case of RetinaMNIST with PVT-v2, accuracy drops slightly from 60.65% (raw)
to 58.40% (Undercover) and 59.15% (Ours), indicating minimal impact on the
original task. For verifiability, we measure mean class accuracy on hidden signals.
In RetinaMNIST with PVT-v2, this accuracy is 20.22% on raw data, confirming
no hidden signal, but rises to 70.92% (Undercover) and 94.37% (Ours), prov-
ing the model has learned the hidden signal. While BloodMNIST shows lower
verifiability, sample imbalance correlation helps resolve ambiguity: -0.02 (Un-
dercover) vs. 0.35 (Ours), showing stronger alignment in our case. Overall, our
method effectively verifies whether a model was trained on a protected dataset.

Verification for Segmentation Task: Similar to classification, we evaluate
the model using three metrics: Harmlessness, Verifiability, and EFAC. Harmless-
ness and verifiability are assessed via Dice Similarity Coefficients (DSC) for test
data and hidden signals. We generate four hidden signal sets and measure the
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Fig. 4. t-SNE visualization for DermaMNIST case.

correlation between their Dice coefficients and predefined occurrence probabil-
ities. Figure 3 presents examples of segmentation results from a model trained
on the PRADA dataset. As shown, the model performs well on raw test data,
demonstrating harmlessness. For the least and most frequent hidden signals, the
predicted mask is partially broken, but the most frequent signal produces a more
defined output, indicating effectiveness of EFAC. As shown in Table 2, the pro-
posed method achieves higher verifiability and EFAC values while maintaining
similar test Dice degradation compared to Undercover Bias. This demonstrates
that the PRADA dataset remains reliably verifiable even when mixed with other
datasets, highlighting its practical applicability for real-world usage.

3.3 t-SNE Visualizations

To analyze how hidden signals operate in trained models, we visualize the feature
distribution using t-SNE. Figure 4 shows the t-SNE results for three PVTv2
trained on each dataset (Raw, Undercover, and Ours). We extract features of
hidden signals and visualize their distributions, with each color representing
a hidden signal class label. As seen in Figure 4(a), the model trained on raw
data (without hidden signals) shows no discriminability. However, models trained
with Undercover (Figure 4(b)) and Ours (Figure 4(c)) exhibit distinct clusters,
indicating that the hidden signals are learned. Moreover, Undercover does not
differentiate between frequent and rare cases, treating both equally. In contrast,
our method distinctly separates rare and frequent cases, enabling more detailed
and robust verification based on signal frequency.
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4 Conclusion

In this paper, we propose a two-step dataset verification method that embeds
hidden signals while preserving model performance. Building on prior approaches,
we leverage data imbalance—traditionally seen as a drawback in training—to
improve verification reliability through asymmetric frequency distributions. By
intentionally introducing data imbalance and incorporating EFAC, a metric that
measures alignment between model performance and predefined occurrence fre-
quency, we enhance dataset misuse detection. Experiments on classification and
segmentation tasks demonstrate minimal performance degradation while ensur-
ing strong verifiability through mean class accuracy on hidden signals and EFAC.
Our method provides a reliable solution for dataset verification, particularly in
medical imaging, where models are highly sensitive to degradation and often
constrained by a limited number of classes.
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