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Abstract. Distribution shifts of medical images seriously limit the per-
formance of segmentation models when applied in real-world scenarios.
Test-Time Adaptation (TTA) has emerged as a promising solution for
ensuring robustness on images from different institutions by tuning the
parameters at test time without additional labeled training data. How-
ever, existing TTA methods are limited by unreliable supervision due
to a lack of effective methods to monitor the adaptation performance
without ground-truth, which makes it hard to adaptively adjust model
parameters in the stream of testing samples. To address these limitations,
we propose a novel Test-Time Evaluation-Guided Dynamic Adaptation
(TEGDA) framework for TTA of segmentation models. In the absence
of ground-truth, we propose a novel prediction quality evaluation metric
based on Agreement with Dropout Inferences calibrated by Confidence
(ADIC). Then it is used to guide adaptive feature fusion with those in
a feature bank with high ADIC values to obtain refined predictions for
supervision, which is combined with an ADIC-adaptive teacher model
and loss weighting for robust adaptation. Experimental results on multi-
domain cardiac structure and brain tumor segmentation demonstrate
that our ADIC can accurately estimate segmentation quality on the fly,
and our TEGDA obtained the highest average Dice and lowest average
HD95, significantly outperforming several state-of-the-art TTA methods.
The code is available at https://github.com/HiLab-git/ TEGDA.
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1 Introduction

Despite the state-of-the-art performance of deep learning models on medical im-
age segmentation, they usually require that the distribution of testing images be
aligned with that of training data [13]. However, in clinical scenarios, there are
large variations in imaging devices, protocols, and patient demographics, mak-
ing test samples have an obvious distribution shift from training data, severely
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limiting performance at test time [3}/18]. To overcome this challenge, Test-Time
Adaptation (TTA) is a promising solution as it can efficiently update the model
during inference on a stream of testing samples without ground-truth labels.

Existing TTA methods mainly include back-propagation-free [15] and back-
propagation-based methods [5[21]. The first category including PTBN [15] and
InTEnt [7] only updates Batch Normalization (BN) statistics based on the cur-
rent testing image for adaptation. Despite the efficiency, their freezing of model
parameters often limits the adaptability. The second category uses loss functions
based on auxiliary tasks [918], entropy minimization [21] or pseudo-labels [22}24]
to update model parameters for better adaptability. The auxiliary task-based
methods are challenged by the gap between auxiliary task (e.g., reconstruc-
tion) |9] and segmentation task, while entropy minimization easily leads to over-
confidence and incorrect predictions. In contrast, methods based on pseudo-
labels are appealing as they can provide more target-related supervision for
adaptation with the absence of ground-truth |22|. However, due to the domain
gap between training and testing samples, the quality of pseudo-labels generated
by model prediction is usually poor with a large variation, which adversely af-
fects the performance. Therefore, it is critical to find a reliable metric to evaluate
the prediction quality accurately during TTA and design adaptive strategies to
leverage them to ensure reliable adaptation. Even though some metrics such as
uncertainty based on prediction entropy [16|, variance [25] or discrepancy [26]
have been designed, they are often not well calibrated to accurately assess the
prediction quality on testing samples with distribution shifts. In addition, how
to leverage these evaluation metrics to help refine pseudo-labels and adapt the
model update strategy has still rarely been explored for segmentation tasks.

To address these issues for pseudo-label-based TTA methods, we propose a
novel Test-time Evaluation-Guided Dynamic Adaptation (TEGDA) framework.
The contribution is three-fold. Firstly, we present a novel prediction quality
evaluation metric based on Agreement with Dropout Inferences calibrated by
Confidence (ADIC), where the Dice score between predictions by the model
and its dropout version is leveraged to assess the robustness of the model on a
testing sample, then it is further calibrated by the confidence to become highly
relevant to the real Dice value between the prediction and its ground-truth.
Secondly, we propose Adaptive Feature Fusion-based Refinement (AFFR) that
adaptively fuses the feature of a sample with those with high ADIC values based
on their similarity, leading to robust refined pseudo-labels. Thirdly, we introduce
ADIC-guided Self-adaptive Model Updating (SMU) that consists of ADIC-aware
pseudo-label loss weighting and ADIC-aware mean teacher to improve the sta-
bility of adaptation. Experiments on multi-domain 2D cardiac structure and 3D
brain tumor segmentation demonstrate that the Pearson correlation coefficient
between our ADIC and real Dice score is as high as 0.83, and TEGDA outper-
forms several state-of-the-art TTA methods on the two datasets, respectively.
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Fig. 1. Overview of our TEGDA for test-time adaptation of segmentation models.

2 Method

Given a segmentation model 64 pre-trained on a source-domain dataset Dg, the
unlabeled target-domain dataset for testing is denoted as Dy, where D has a
distribution shift from Dg. The goal of TTA is to adapt 6, in real-time to each
incoming test batch B; = {X;}2 | from D7, where t is the batch index, B is the
batch size, and X; is a testing sample. Importantly, each batch undergoes model
update and inference before moving on to the next, guaranteeing that the entire
dataset is tested within a single epoch in TTA.

As depicted in Fig. 1} our TEGDA framework has three modules: 1) Test-time
prediction quality evaluation via Agreement with Dropout Inferences calibrated
by Confidence (ADIC); 2) Adaptive Feature Fusion-based Refinement (AFFR),
which constructs a feature bank based on historical samples with high ADIC
values and fuses the feature of a testing sample with those in the feature bank
for pseudo-label refinement; and 3) ADIC-guided Self-adaptive Model Updating
(SMU) that dynamically adjusts the weight of pseudo-labels based on ADIC
values, and is combined with an ADIC-aware mean teacher for robust adaptation.

2.1 ADIC for Test-time Prediction Quality Evaluation

For segmentation tasks, Dice between the prediction and ground-truth is a com-
mon metric for evaluation. In the absence of ground-truth for testing samples,
it is desirable to estimate the Dice values automatically. Though Monte Carlo
(MC) Dropout [8] has been widely used for uncertainty estimation to assess
the prediction quality, it is not specifically designed for segmentation tasks, and
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cannot directly indicate Dice scores. To deal with this problem and inspired by
previous works [10L12] that show prediction disagreement with dropouts can ap-
proximate the test error, we propose to use Agreement with Dropout Inference
calibrated by Confidence (ADIC) as an estimation of the Dice score.
Specifically, let 8; denote the adapted model parameter before the ¢-th batch,
and 9{" is a variant of #; with the m-th random dropout. For a test sample X,
the predictions with 6, and 07 are denoted as P = f(0;, X) and P™ = f(07, X),
respectively. The Agreement with Dropout Inference (ADI) score is:

M C-1 N1Pnc.15m
ADI(X me_ 1

where N denotes the pixel/voxel number in the image, and M is the number of
dropout inferences. P, . denotes the probability for class ¢ at the n-th pixel in
P, and Pm is the corresponding value obtained by the m-th dropout version.
Note that for segmentation models, dropout inference often yields high agree-
ment between P and P™ in interior regions but minor discrepancy at borders
in the target [25], leading ADI score to overestimate Dice. Therefore, we further
introduce a factor b € (0,1) to calibrate the ADI score, which is defined as the
overall confidence of dropout-based predictions. The average prediction map is
denoted as P = ﬁ Z%zl ]57", and the average pixel-wise entropy Fg.g is:

—-1C-1

Euvg = NCZZPnCIOanc (2)

n=0 c¢=0

Then the overall confidence is b = 1 — Eq,4/logC', where logC' is the maximal
entropy value for normalization. The calibrated ADI score (ADIC) g is:

Eavg

logC'

a(X) =b- ADI(X) = (1 - =22 ADI(X), (3)
where ¢ is the calibrated estimation of prediction quality, and used to select
well-predicted samples and guide subsequent adaptation to the current sample.

2.2 Adaptive Feature Fusion-based Refinement based on ADIC

Since previous works have shown that utilizing robust features from well-predicted
images can minimize the domain disparity for other test images [27], we pro-
pose an Adaptive Feature Fusion-based Refinement (AFFR) strategy, which uses
ADIC to filter historically well-predicted samples to help adaptation.

Firstly, we maintain a dynamic feature bank F of fixed capacity L, updated
with a first-in-first-out policy to remain adaptive to the recent distribution of
test samples. Specifically, let 8¢ denote the encoder of 0;, the feature for the i-th
image X; is denoted as z; = f(6f, X;). Then z; is pushed to F if ¢(X;) exceeds
the 7 percentile of all previous samples’ ADIC values before time step ¢.

Secondly, for a new test sample, we use sim(z;, z;) to denote the cosine sim-
ilarity between z; and the [-th feature z; in F. Then z; is updated as a linear
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combination of z; and z; (I =0,1,...,L — 1). The weight of z is set as ¢(X;) so

that preservation of the original feature is encouraged for well-predicted sam-
. L—1 .

ples, and z; is replaced by zy = > ;" w;; - 2 for poorly predicted ones, where

w; = sim(z;, 21)/ Y, sim(z, 21).

zi = qizi + (1 = qi)zy (4)

where ¢; = q(X;). 2, is the refined feature of z;, and sent to decoder 6¢ of the
adapted model before t-th step to obtain a refined prediction P/ = f(6¢,2!),
which is used as a refined pseudo-label for X;.

2.3 ADIC-guided Self-adaptive Model Updating

Though AFFR can lead to relatively reliable pseudo labels, the gradient may
fluctuate largely on different testing batches, leading to instability during adap-
tation. Following the common practice of TTA [20,22|, we adopt a mean teacher
model ¢ to improve stability. Considering that traditional mean teacher [19] with
a constant Exponential Moving Average (EMA) rate (e.g., 0.9) is insufficient to
accommodate the dynamic data quality changes in TTA, we introduce an ADIC-
aware mean teacher with an adaptive EMA rate. Given the updated parameters
of the student 6,11 at time step ¢, we can get updated teacher ¢;,1 as:

Gr41 = b1 + (1 — @)y (5)

Finally, to deal with potential noise in P/, we also weight loss by ¢; to suppress
the contribution of poorly adapted samples. The total loss for our TEGDA is:

B
1
LTTA = E § (Lmt(PiNv Pi) + QiLre(Pi/a PL)) (6)
i=1

where P/ is prediction from the teacher model. L,,; and L,. are the mean-
teacher loss and refined pseudo-label loss, respectively, and they are implemented
by the commonly used combination of Dice loss and cross-entropy loss. For each
batch, a single back-propagation using L1 4 is conducted, followed by a forward

propagation with the updated student 6;;; to obtain the final predictions.

3 Experiment and Results

Datasets and Implementation Details We used two public multi-domain
datasets for experiments: 1) M&MS dataset |4] for heart structure segmenta-
tion that consists of 345 3D MRI volumes collected from four different vendors
(identified as Domain A, B, C, and D), with three segmentation classes: Left
Ventricle (LV), Right Ventricle (RV), and Myocardium (Myo). The number of
slices per volume ranges from 10 to 13. Due to the large slice spacing (9.2 to 10
mm), we used 2D U-Net [17] for slice-level segmentation, with each slice resized
to 320 x 320. Domain A was set as the source domain, while Domain B, C, and
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Table 1. Comparison between different TTA methods on the M&MS Dataset. The
first and second sections represent volume-level Dice (%) and HD95 (mm), respectively.
tdenotes a significant improvement (p-value < 0.05) over the best existing method.

Domain B Domain C Domain D

Method LV Myo RV Average Average Average

Source 85.64£9.24  69.82+10.72 75.68+18.70 | 77.05+£11.22 | 69.17+14.96 | 79.93+10.13
TENT [21]| 88.13+7.87  75.01+8.12 78.86+13.24 | 80.67+8.49 | 77.2411.23 | 80.36+8.37
SAR [23| | 88.09+7.88  74.95+8.16 79.04+13.04 | 80.69+8.42 | 77.09+11.36 | 80.36+8.6
CoTTA [22|| 88.024£8.06  74.94+8.09 78.99+12.98 | 80.65+£8.46 | 77.23+11.45 | 80.34+8.51
InTEnt |7| | 86.12+8.93  70.64+10.43 75.98+17.96 | 77.58+10.83 | 70.16+£14.6 | 80.1749.97
VPTTA |5|| 87.654+8.55  75.83+7.60 79.05+13.77 | 80.8448.54 | 78.434+10.25 | 81.1349.2
TEGDA |89.71+6.867 78.33+6.18" 83.30+9.50"(83.784+6.171|79.34+10.421(82.04+7.65"
Source 16.18+22.55 20.954+23.16 8.68+15.31 | 15.27+14.74 | 26.74+21.62 | 16.64+17.9
TENT [21]| 19.93424.41 10.08+14.68 8.454+14.93 | 12.08+13.89 | 20.0+19.87 | 11.35+15.84
SAR 23| | 17.78424.96 13.13+18.47 11.19419.51 | 14.7415.74 | 25.08420.89 | 13.6614.16
CoTTA [22|| 18.714£24.03  9.13414.00 8.42+14.66 | 14.03+15.83 | 19.69419.18 | 11.68+13.88
InTEnt |7| | 16.19423.76 21.16424.06 9.74419.54 | 15.09414.24 | 25.75+21.01 | 15.06+15.93
VPTTA [5|| 17.14424.23  9.21414.91  9.89+18.33 | 12.82413.23 | 17.42+16.03 | 9.19+12.28
TEGDA [11.384+21.12 8.76+16.28" 6.04+12.99(8.73+11.851| 16.76+17.7" | 8.5+12.76"

D as target domains independently. 2) BraTS2023 dataset [1,/2,/11,/14] that is
sourced from different patient groups, and focuses on brain tumor segmentation
including Whole Tumor (WT), Tumor Core (TC), and Enhanced Tumor (ET).
Adult glioma dataset (BraTS-GLI) [1L2}/14] including 1251 patients was set as
the source domain, and pediatric brain tumor dataset (BraTS-PED) [11] includ-
ing 99 patients was set as the target domain. Each patient includes volumetric
images in four modalities resampled to a uniform isotropic resolution (1mm?).
We resized them to a size of 4 x 128 x 128 x 128, and employed the 3D U-Net [6].

For both datasets, images were linearly normalized to [0, 1]. The source model
was trained in the source domain for 200 epochs using the Dice loss and Adam
optimizer with a learning rate of 1.0 x 103, and the checkpoint performed best
in validation was used for adaptation. During adaptation, we set the batch size
to 10 for M&MS and 1 for BraTS2023, employing a single epoch with Adam
optimizer and a learning rate of 1.0 x 10~%. In TEGDA, we set a dropout rate
of 0.5, the dropout number M = 10, the feature bank length L = 10 and the
percentile 7 = 90 for sample filtering. The experiments were conducted with
PyTorch 1.8.1 and a GeForce RTX 3090. We used volume-level Dice similarity
and 95 percentile of Hausdorff Distance (HD95) for evaluation.

Comparison with State-of-the-art TTA Methods Our TEGDA was com-
pared with five state-of-the-art TTA methods: 1) TENT [21] that updates pa-
rameters of BN layers by entropy minimizing; 2) SAR |23| that uses sharpness-
aware entropy minimization; 3) CoTTA [22] that uses a mean-teacher with
test-time augmentation-based pseudo-labels; 4) InTEnt [7] that uses an ensem-
ble of multiple adapted models based on different estimates of the target domain
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Fig. 2. Qualitative comparison of different TTA methods on two datasets.

Table 2. Comparison between different TTA methods on the BraTS2023 dataset.
tdenotes a significant improvement (p-value < 0.05) over the best existing method.

Dice (%) HD95 (mm)
WT TC ET Average Average
Source | 78.56+21.78  29.65+30.27  51.29437.43 | 53.17+£22.46 | 24.05+28.61
TENT [21] |85.14414.06 32.08430.47  51.76+35.97 | 56.33+20.86 | 19.71424.83
SAR 23] | 84.99414.67 31.90430.45  49.23+36.24 | 55.38+21.42 | 19.79425.29
CoTTA [22|| 84.89414.80 31.95+30.49  50.22436.39 | 55.69421.21 | 20.01+25.15
InTEnt [7] | 79.274£20.92  29.86+30.25  51.55437.42 | 53.56+£22.23 | 23.43+27.00
VPTTA |5|| 84.28414.4 31.15+29.88  51.82+36.26 | 55.75420.47 | 22.59+26.30
TEGDA | 84.35+17.08 35.19+31.86" 55.261+-36.591|58.27+19.741|16.28+24.59"

Method

statistics; 5) VPTTA |5] that adapts by image-specific prompts in the frequency
domain. ‘Source’ means inference with the source model without adaptation.
Table [I] shows the quantitative results on the M&MS dataset. The source
model obtained an average Dice of 77.05% on Domain B, while that of existing
methods ranged from 77.58% to 80.84%. Our TEGDA got the highest Dice of
83.78%, which is 6.73 percentage points higher than the baseline and significantly
better than the existing methods. Besides, TEGDA obtained the highest Dice
and lowest HD95 on all three domains, outperforming the other methods.
Table [2] further shows the comparison of these methods for adapting 3D
segmentation models on the BraTS2023 dataset. It’s worth noting that there is a
significant domain shift between BraTS-GLI and BraTS-PED due to the complex
structure of brain tumors and the appearance difference between different age
groups, resulting in poor performance of the source model. Nevertheless, our
TEGDA outperformed existing methods, improved average Dice from 56.33% to
58.27% compared with the best existing method, and obtained the lowest HD95.
The qualitative results shown in Fig. [2| demonstrate that existing methods
often result in under-segmentation or over-segmentation, while our TEGDA is
superior in accurately delineating the target regions in different domains.
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Table 3. Ablation study of TEGDA on different datasets. AFFR=¢ means using en-
tropy for selecting well-predicted samples instead of ADIC. SMU=¢ means setting
EMA rate and weight of L. to fixed values (0.9 and 1.0, respectively).

L., L. AFFR SMU M&MS Domain B BraTS-PED
LV Myo RV WT ET TC
85.64+9.24 69.824+10.72 75.68+18.70| 78.564+21.78 29.654+30.27 51.29437.43
v 87.97£8.00 75.49£8.41 78.96+13.05| 84.07+16.10 31.374£31.25 49.64+37.28
v 3 o | 87.62+£7.92 76.08£7.72 81.08£10.73| 78.73£22.60 35.27£32.20 52.68+37.21
v v <o o | 88.1247.62 76.57+7.43 81.564+10.45| 79.75+21.04 35.591+32.21 53.37+36.98
v v v o 1 89.3247.15 77.41+£7.13 82.63£10.21| 83.27£17.57 35.34+£31.91 53.26+36.75
v v v v |89.71+6.86 78.331+6.18 83.304+9.50|84.35+17.08 35.19+31.86 55.261+36.59
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Fig. 3. (a) Comparison between ADIC and other prediction quality evaluation meth-
ods, where r is Pearson correlation coefficient between the evaluation score and real
Dice; (b) Effect of feature bank length L on average Dice. (¢) Effect of percentile 7 for
sample filtering on average Dice. All subfigures show results on Domain B of M&MS.

Ablation Study Quantitative results of the ablation study of our TEGDA
framework on the two datasets are detailed in Table[3l The baseline method was
using the source model for inference. We gradually added different components
including L, Lye, AFFR and SMU. It can be observed on both datasets that
the incorporation of each component contributed to performance improvement.

Besides, for estimating the Dice with the absence of ground-truth on test-
ing images, we compare our ADIC with ADI and some alternative methods,
including Entropy 7 Variance and Estimated Accuracy based on MC
dropout. The evaluation scores of these methods were linear normalized to [0,1]
for a more intuitive comparison. Fig. 3| (a) shows that our ADIC is highly corre-
lated with the real Dice compared to the other four methods, with a correlation
coefficient of 0.83. In addition, our TEGDA only has two main hyper-parameters,
i.e., the feature bank length L and percentile 7 for sample filtering. Fig. 3| (b)
shows that the adaptation performance is insensitive to L when L > 10, and
Fig. [3] (¢) indicates that either excessively high or excessively low 7 will impact
performance, and 7 = 90 performs best for AFFR.
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4 Conclusion

We proposed a novel Test-Time Evaluation-Guided Dynamic Adaptation (TEGDA)
framework for medical image segmentation, addressing the critical issue of un-
reliable supervision of existing TTA methods. TEGDA leverages a novel metric
based on Agreement with Dropout Inference calibrated by Confidence (ADIC) to
reliably evaluate the prediction quality. ADIC is used to adaptively fuse features
of a sample with those with high prediction quality for refinement, and ADIC-
aware pseudo-label loss weighting and ADIC-aware mean teacher are used for
robust model adaptation. Experiments on both 2D and 3D datasets demon-
strated its robustness and superiority over existing TTA methods. In the future,

it is of interest to extend TEGDA to different applications in medical images.
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