
Meta-Learning-Driven CT Morphology
Disentangled Diffusion Model for Multi-Region

SPECT Attenuation Correction

Haoran Yang1, Jiansong Fan1, Lihua Li3, and Xiang Pan1,2,∗

1 School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi
214122, China

2 The PRC Ministry of Education Engineering Research Center of Intelligent
Technology for Healthcare, Wuxi, Jiangsu 214122, China

3 Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi
University, Hangzhou, China

∗Corresponding author: xiangpan@jiangnan.edu.cn

Abstract. SPECT imaging faces persistent challenges from soft-tissue
attenuation artifacts in clinical practice. While CT-based correction re-
mains the clinical reference standard, associated radiation risks and in-
frastructure requirements limit its widespread adoption. To address this,
we propose a Meta-Learning-Driven CT Morphology Disentangled Diffu-
sion Model (MetaMorph-Diff), which achieves CT-independent attenua-
tion correction. First, we design a Morphological Structure-Attentive Fu-
sion module that explicitly guides the diffusion process using CT-derived
anatomical priors. During training, its Morpho-Attentive Alignment sub-
module establishes voxel-level physical constraints between SPECT fea-
tures and attenuation distributions by leveraging CT anatomical priors.
During inference, its Morpho-Disentangling Gate achieves complete dis-
entangling from CT dependencies through learned morphological embed-
dings. Crucially, the model uses only SPECT images during inference to
achieve accurate attenuation correction without relying on CT data. Sec-
ond, we propose a multi-region adaptive meta-learning strategy, which
enhances cross-anatomical generalization capability by optimizing model
initialization parameters, enabling a single model to achieve consistent
and accurate correction across diverse anatomical regions. Our method
surpasses existing approaches with higher-precision attenuation distri-
bution prediction and stronger multi-region correction adaptability. The
code is available at https://github.com/yhr1020/MetaMorph-Diff.
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1 Introduction

Single photon emission computed tomography (SPECT) is widely used for di-
agnostic purposes across multiple anatomical regions, such as diagnosing brain
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tumors, epilepsy, and stroke, diagnosing and detecting recurrences of differenti-
ated thyroid cancer, as well as assessing coronary artery disease and myocardial
injury [14]. In clinical applications, SPECT imaging is susceptible to soft tissue
attenuation artifacts, leading to false positives or false negatives, thus reducing
diagnostic accuracy [20]. To address this issue, the most commonly used method
is attenuation correction using computed tomography (CT) [1,7]. Although CT
plays a crucial role in attenuation correction, the X-ray radiation it uses poses
a certain radiation risk to patients. Additionally, the high cost of SPECT/CT
scanners limits the widespread use of SPECT in certain clinical settings, espe-
cially in resource-limited areas.

Previous works have attempted to address this issue using deep learning-
based generative networks. Sakaguchi et al. [18] employed a CNN-based Au-
toEncoder for brain SPECT, while Chen et al. [2] developed a 3D Dual Squeeze
Excitation Residual Network for cardiac applications. Shi et al. [19] utilized 3D
cGANs to estimate myocardial attenuation maps. However, these approaches
remain confined to single anatomical regions and crucially neglect CT morpho-
logical priors during training, resulting in physically inconsistent reconstructions
with compromised anatomical fidelity.

Recently, diffusion models have been shown to generate better sample qual-
ity than state-of-the-art GANs [4], with applications spanning style transfer [15],
image super-resolution [12], among others. In the medical field, they have been
utilized in scenarios such as anomaly detection, medical image segmentation, de-
noising, registration, and generation [10]. However, traditional diffusion models
are typically unconditional or based on simple class-conditioned controls, mak-
ing it difficult to effectively extract multi-modal features from input images and
achieve accurate multi-region medical image translation.

In this paper, we propose a meta-learning-driven CT morphology disentan-
gled diffusion model for multi-region attenuation correction. Firstly, we design a
Morphological Structure-Attentive Fusion (MSAF) module that explicitly guides
the diffusion process using CT-derived anatomical priors. During training, its
Morpho-Attentive Alignment (MA) submodule hierarchically extracts CT im-
age features and establishes voxel-level physical constraints between SPECT
features and attenuation distributions by leveraging CT anatomical priors. Dur-
ing inference, the Morpho-Disentangling Gate (MDG) achieves complete disen-
tangling from CT dependencies through learned morphological structure em-
beddings. Secondly, we develop a Multi-region Adaptive Meta-Learning strategy
(MAML) to enable the model to adapt to attenuation correction tasks across di-
verse anatomical regions, thereby enhancing its generalization capability across
multi-anatomical sites. Finally, we design and fine-tune a hybrid loss function
tailored to the structural information requirements and voxel-level accuracy de-
mands of SPECT attenuation correction. Experiments show our method achieves
superior quantitative/qualitative performance and adaptability in multi-region
tasks compared to existing approaches.
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2 Methodology

Fig. 1. The MetaMorph-Diff framework. The training set is divided into multiple sup-
port sets and query sets, with k-shot samples in each batch, where yi/y′

i represents the
attenuation-corrected SPECT images in support/query sets, and x/x′ represents the
conditional input of non-corrected SPECT images in support/query sets.

Our model consists of two main components: the Multi-Region Adaptive
Meta-Learning-Driven Diffusion Model and the Morphological Structure-Attentive
Fusion (MSAF) module. To more clearly illustrate the proposed architecture,
Figure 1 depicts the overall framework of MetaMorph-Diff.

2.1 Morphological Structure-Attentive Fusion Module

Our study proposes an MSAF module to achieve CT morphological feature fu-
sion while disentangling CT morphological inputs during inference. The MSAF
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module comprises two core components: a morphological encoder and a Morpho-
Attentive Gate module (MAG).

The morphological encoder fMorph(·) hierarchically extracts structural fea-
tures from CT images, generating multi-scale representations {F l

CT}Ll=1, where
L denotes the depth of the encoder. These features are fused with SPECT
functional features {F l

SPECT}Ll=1 from the diffusion network’s encoder fSPECT(·)
through MAG. The MAG operates in two distinct modes:

Morpho-Attentive Alignment. The MA establishes structural correspon-
dence during training phase through cross-modal attention [16]:

F l
fusion = Softmax

(
Ql

SPECT(K
l
CT)

⊤
√
d

)
V l

CT (1)

Where the query matrix is derived from SPECT features (Ql
SPECT =

WQF
l
SPECT, with WQ ∈ Rd×d being a learnable projection matrix), while key

and value matrices derive from CT morphological features (Kl
CT = WKF l

CT,
V l

CT = WV F
l
CT). Here, d denotes the feature dimension for scaling the dot-

product attention to prevent gradient saturation. This cross-modal interaction
enables the network to learn physically constrained attenuation mappings during
the training phase.

Morpho-Disentangling Gate. During the inference phase, the MDG achieves
complete CT dependency disentangling through a single-modal attention mech-
anism:

F l
fusion = Softmax

(
Ql

SPECT(K
l
SPECT)

⊤
√
d

)
V l

SPECT (2)

All attention components (Ql
SPECT, Kl

SPECT, V l
SPECT) are endogenously de-

rived from SPECT features. Leveraging morphological priors learned during the
training phase, the model maintains anatomical consistency without requiring
CT input and rapidly adapts to CT-free attenuation correction tasks through a
meta-learning strategy.

2.2 Multi-Region Adaptive Meta-Learning-Driven Diffusion Model

Diffusion Model. The proposed method builds upon the standard diffusion
framework [8], which defines forward and reverse Markov chains over T timesteps.
The forward process gradually adds Gaussian noise to attenuation-corrected im-
ages y0 through:

q(yt|yt−1) = N (yt;
√

1− βtyt−1, βtI) (3)
where βt controls the noise schedule.

For conditional generation, we adopt SR3’s architecture [17] that concate-
nates non-corrected SPECT images x with noisy samples yt as input. The reverse
process learns to iteratively denoise yT via:

pθ(yt−1|yt, x) = N (yt−1 | µθ(x, yt, t), Σθ(x, yt, t)) (4)
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Multi-Region Adaptive Meta-Learning. To improve the model’s stabil-
ity for attenuation correction without CT across different anatomical regions,
we employ the MAML for optimization. Each anatomical region’s correction is
defined as a task with k-shot samples [6]. Initializing parameters θ0, we per-
form G-step inner-loop updates on support set Sj

ACi
from training tasks Ttrain

(Fig. 1(a)):
θGj = θGj−1 − α∇θLSj

AC
(FθG

j−1
) (5)

where α denotes the inner-loop learning rate. The outer-loop optimization
evaluates θ0 over J-scale tasks using query sets Qj

AC (Fig. 1(b)):

θ0 = θ0 − β∇θ

J∑
j=1

LQj
AC

(FθG
j
(θ0)) (6)

Where β is the outer-loop learning rate, and LQj
AC

is the loss function.

2.3 Hybrid Loss Function

Due to the high demand for image detail preservation in the attenuation correc-
tion task, we designed and fine-tuned a hybrid loss function. Specifically, we com-
bined Multi-Scale Structural Similarity Index (MS-SSIM) and L2 loss, mixing
them with appropriate weight ratios to effectively balance the retention of image
structural information with the control of smoothness. While preserving high-
frequency details of the image, this method effectively suppresses low-frequency
noise, thereby improving the image quality and reconstruction accuracy. The
loss function is expressed as:

LMix = α · LMS-SSIM + (1− α) ·GσG
M

· Ll2 (7)

Where LMS-SSIM is the multi-scale structural similarity loss [22], and GσG
M

approximates the MS-SSIM pyramid structure by applying different Gaussian
smoothing parameters σG on the full-resolution image, thereby reducing com-
putational overhead and capturing multi-scale information. Ll2 is the standard
l2 loss. We experimented with and fine-tuned the parameter α to control the
balance between the two loss functions.

3 Experiments and Results

3.1 Dataset and Implementation Details

Dataset. In this study, we used an in-house dataset from a hospital in China.
The dataset comprises 821 brain perfusion cases, 810 thyroid cases, and 814
myocardial perfusion cases. All images were acquired using the Philips Prece-
dence 16 SPECT/CT system (Philips, Netherlands), equipped with a low-energy
general-purpose parallel-hole collimator with a peak energy of 140 keV and a win-
dow width of 20%. The radiopharmaceuticals used for brain perfusion, thyroid,
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Fig. 2. The Joint Histogram of Voxels presents the voxel value distributions between
the non-corrected image (SPECTNC), the image generated by our MetaMorph-Diff
(SPECTMMD), and the CT-based attenuation-corrected image (SPECTCTAC). The
voxel values are normalized to the range [0, 1] and undergo a logarithmic transfor-
mation.

and myocardial perfusion imaging were 99Tcm-ECD 925∼1110 MBq, 99TcmO4

555∼740 MBq, and 99Tcm-MIBI 925∼1110 MBq, respectively. Each sample in-
cludes a set of paired images, specifically the original non-corrected SPECT
image, the corresponding CT image, and the attenuation-corrected SPECT im-
age.

Implementation Details. Based on the NVIDIA RTX A6000 GPU, we im-
plemented our network using the PyTorch framework. The Adam optimizer was
employed with an initial learning rate set to 2× 10−4 for updating the network
parameters. The size of all input images were adjusted to 128×128 pixels.

3.2 Results

In this study, we used several quantitative metrics to evaluate the performance
of the proposed model: Structural Similarity Index (SSIM) [21], Peak Signal-to-
Noise Ratio (PSNR), Mean Absolute Error (MAE), Pearson Correlation Coeffi-
cient (PCC) [13], and Euclidean Distance (ED) [5]. Additionally, we present the
voxel-level joint histogram (see Fig. 2). The joint histogram of voxels indicates
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Fig. 3. Qualitative results of different methods. NC represents the non-corrected image,
while AC refers to the attenuation-corrected image using CT.

that the voxel distribution of SPECTMMD closely matches the voxel distribu-
tion of the ground truth image, demonstrating its greater accuracy in voxel-level
mapping.

We compared MetaMorph-Diff with four state-of-the-art image translation
methods [3, 9, 11, 23] to evaluate its performance in multi-region attenuation
correction. Additionally, we integrated a meta-learning framework [6] into two
comparison models to assess the effectiveness of combining it with our base
model. Finally, we analyzed MetaMorph-Diff’s performance across different k-
shot settings to identify the optimal k value. All experiments were performed
with the same dataset and setup for consistency and fairness.

We present the quantitative results of all comparison experiments in Table 1.
The experiments demonstrate that our MetaMorph-Diff (k = 5) consistently out-
performs all baseline methods across all evaluation metrics. To further validate
the statistical significance of these results, we conducted one-way ANOVA tests
using IBM SPSS Statistics 27.0. The analysis revealed that all metrics yielded
P-values less than 0.01, indicating statistically significant differences among the
models (P < 0.05 was considered significant).

Fig. 3 illustrates the generation results of different methods. UNSB [11] and
CycleGAN [23] show better generation results for certain specific sites, but their
generation performance is unstable for other sites. VQ-I2I [3] shows suboptimal
generation, struggling to achieve precise image translation and exhibiting no-
ticeable distortion. While Pix2pix [9] performs similarly to our model in terms
of structural similarity, its translation performance in the regions of interest
remains less accurate, particularly in handling detailed areas where it lacks suf-
ficient precision.
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Table 1. Quantitative results of different methods(Mean±Std)

Methods Setting SSIM↑ PSNR↑(dB) MAE↓ (×10−2) PCC↑ (×10−2) ED↓
UNSB No MAML 0.85 ± 0.09 28.87 ± 4.38 3.37 ± 3.42 93.03 ± 4.43 7.82 ± 4.64

VQ_I2I No MAML 0.60 ± 0.15 20.48 ± 5.39 9.38 ± 3.51 72.32 ± 8.96 9.58 ± 7.83

Pix2Pix No MAML 0.92 ± 0.04 28.63 ± 3.85 2.24 ± 1.52 84.02 ± 3.75 3.93 ± 1.43
3-way 5-shot 0.92 ± 0.04 29.43 ± 2.74 1.58 ± 0.63 96.27 ± 2.51 2.58 ± 1.68

CycleGan No MAML 0.79 ± 0.08 27.61 ± 2.83 2.43 ± 1.14 86.45 ± 12.54 3.81 ± 1.81
3-way 5-shot 0.91 ± 0.03 34.47 ± 0.39 2.07 ± 0.57 96.66 ± 1.86 2.08 ± 0.38

Ours

3-way 1-shot 0.60 ± 0.03 29.56 ± 1.70 2.80 ± 0.49 87.24 ± 7.61 5.02 ± 0.90
3-way 2-shot 0.77 ± 0.02 32.55 ± 2.28 1.74 ± 0.48 94.28 ± 3.45 3.55 ± 0.93
3-way 3-shot 0.90 ± 0.03 34.88 ± 3.34 1.33 ± 0.58 96.32 ± 2.57 2.93 ± 1.14
3-way 4-shot 0.95 ± 0.02 39.51 ± 3.66 0.83 ± 0.43 98.69 ± 1.11 1.75 ± 0.84

3-way 5-shot 0.96 ± 0.02 41.42 ± 3.74 0.63 ± 0.32 98.84 ± 1.04 1.00 ± 0.58
3-way 6-shot 0.96 ± 0.02 40.92 ± 4.38 0.67 ± 0.54 98.60 ± 1.34 1.08 ± 0.61

Table 2. Results of ablation study(Mean±Std)

MSAF Hybrid Loss MAML SSIM↑ PSNR↑(dB) MAE↓ (×10−2) PCC↑ (×10−2) ED↓
× ✓ ✓ 0.92 ± 0.01 39.38 ± 2.74 0.81 ± 0.23 98.34 ± 1.16 1.59 ± 0.51
✓ ✓ × 0.92 ± 0.03 36.53 ± 4.11 1.16 ± 0.59 97.81 ± 1.86 2.59 ± 1.02
✓ × ✓ 0.93 ± 0.02 38.64 ± 4.47 0.90 ± 0.54 98.51 ± 1.69 1.87 ± 1.03
✓ ✓ ✓ 0.96 ± 0.02 41.42 ± 3.74 0.63 ± 0.32 98.84 ± 1.04 1.00 ± 0.58

3.3 Ablation Study

To further investigate the importance of the design components in MetaMorph-
Diff, we systematically analyzed the impact of removing or modifying three mod-
ules: MSAF, MAML, and the Hybrid Loss Function.

For the MSAF, we removed the MSAF module from the network and replaced
the inter-layer connections between convolutional outputs with self-attention
mechanisms. For the MAML module, we removed the meta-learning framework
and instead trained the base model separately for each site. For the Hybrid Loss
module, we replaced the original hybrid loss calculation with mean squared error
(MSE) loss function.

As shown in Table. 2, the ablation study results indicate that our modules
play a crucial role in enhancing the model’s performance.

4 Conclusion and Future Work

We propose a meta-learning-driven CT morphology disentangled diffusion model
for multi-region SPECT attenuation correction, overcoming the reliance on CT
scans. Our experimental results show superior performance in both quantita-
tive and qualitative assessments, with generated images demonstrating enhanced
quality, stability, and voxel consistency. This approach offers a promising solu-
tion for attenuation correction in resource-limited settings, reducing the need
for costly and radiation-prone CT scans while maintaining diagnostic accuracy.
Future work will focus on developing a foundational model with improved gener-
alization capability for attenuation correction across diverse anatomical regions.
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