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Abstract. Dental implantation restores missing teeth through surgical
insertion of artificial roots, relying on preoperative digital planning to
ensure precision and efficiency. However, critical challenges persist in vir-
tual tooth positioning: this process demands extensive clinical expertise
and time-consuming manual adjustments due to ambiguous anatomical
references from missing teeth. To address these limitations, we propose
a unified framework that accurately predicts the original three dimen-
sional (3D) shapes and positions of missing teeth in diverse patterns,
enabling anatomy-aware preoperative planning. Our proposal introduces
two technical innovations: (1) A dynamic iterative generation strategy is
proposed to progressively predict multiple missing teeth one by one using
a target tooth identification module, accommodating arbitrary tooth loss
patterns without case-specific retraining; (2) A tooth-centroid-prompted
conditional diffusion model is developed to leverage geometric constraints
from predicted tooth centroid and adjacent teeth to generate high-fidelity
point cloud reconstructions. Extensive experiments show that our model
outperforms conventional U-net based framework in predicting multi-
ple missing teeth, achieving a prediction accuracy of 1.30mm (Chamfer
Distance) and an angular error of 5.42 degrees. This improvement has
the potential to enhance the accuracy and efficiency of dental implant
planning by providing precise anatomical references for missing teeth,
potentially revolutionizing digital dentistry workflows.

Keywords: Digital dentistry - Dental implant - Deep learning - Diffu-
sion model - Point cloud generation
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1 Introduction

Dental implantation has become a foundational component of contemporary
restorative dentistry, providing reliable functional and aesthetic results through
the surgical insertion of artificial roots into the jawbone [9]. The procedure re-
lies critically on preoperative digital planning, which integrates advanced imag-
ing modalities like cone-beam computed tomography (CBCT) and computer-
aided design (CAD) software to optimize implant positioning and prosthetic
outcomes [15]. Central to this workflow is virtual tooth positioning, a process
that determines the optimal three-dimensional (3D) implant location, angula-
tion, and depth by simulating anatomical relationships between missing teeth
and adjacent structures [3]. Despite advancements, virtual tooth positioning re-
mains a time-intensive and expertise-dependent task, as its efficacy and accuracy
are still constrained by the need for unambiguous anatomical references, which
are often absent in cases of tooth loss [16,4]. In current clinical practise, clinicians
must manually perform tooth positioning through iterative trial-and-error ad-
justments, a process that demands profound familiarity with occlusal dynamics
and regional bone morphology [17]. This challenge is exacerbated in cases of mul-
tiple missing teeth, where inter-tooth spatial relationships and arch continuity
are disrupted, further complicating anatomical inference [12].

Accurate 3D reconstruction of missing teeth, encompassing spatial coordi-
nates, axial orientation, and morphological details, provides foundational refer-
ences for precision implant planning, yet remains clinically elusive due to two
inherent complexities [2]. First, dental anatomy exhibits intricate inter-tooth
biomechanical relationships, where subtle variations in crown-root angulation or
proximal contact points critically influence occlusal dynamics [12,13]. Second,
tooth loss patterns span a high-dimensional spectrum, ranging from single-tooth
gaps to complex multi-unit edentulism with non-linear spatial dependencies [13].
Despite preliminary efforts to address these challenges, existing methodologies
suffer from fundamental limitations: Panoramic radiograph analysis [141] and
neighbor-guided localization [2] reduce the problem to 2D detection or heuris-
tic positioning, neglecting 3D shape reconstruction. Conventional deep learning
methods like U-net and its variants often fail to capture the intricate morpholog-
ical variability of dental structures or enforce biomechanically valid spatial con-
straints [6,7,8]. Moreover, most frameworks require case-specific retraining when
confronted with arbitrary tooth loss configurations, undermining their practical-
ity in real-world clinical workflows. These limitations highlight an unmet need
for robust, generalizable systems capable of reconstructing both 3D shapes and
positions of multiple missing teeth while preserving anatomical coherence with
adjacent dentition.

To address these challenges, we propose a unified framework for anatomy-
aware preoperative planning that accurately predicts the original 3D shapes
and spatial positions of missing teeth in diverse patterns. Our methodology in-
troduces two interconnected innovations designed to overcome limitations in
existing computational approaches. First, we develop a dynamic iterative gener-
ation strategy that progressively reconstructs multiple missing teeth one by one
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through a neighborhood-aware updates. This mechanism autonomously iden-
tifies prediction sequences of the multiple missing teeth, effectively decompos-
ing complex multi-tooth reconstruction tasks into sequential single-tooth predic-
tions. Crucially, this architecture adapts to arbitrary tooth loss patterns without
requiring case-specific retraining, significantly enhancing clinical adaptability.
Second, we propose a tooth-centroid-prompted conditional diffusion model that
generates 3D point clouds by leveraging geometric constraints from predicted
tooth centroid and its adjacent teeth. This dual-conditioning strategy ensures
high-fidelity reconstructions while preserving occlusal functionality. These two
innovations create a robust framework for accurately predicting missing teeth in
any loss pattern while maintaining clinical flexibility. This may open new possi-
bilities for enhancing the quality and precision of dental implantation in clinical
practice.

2 Method

2.1 Dynamic Iterative Generation Strategy

In this study, we propose a unified framework to iteratively predict multiple
missing teeth using a dynamic iterative generation strategy (DIGS). The core of
DIGS is a target tooth identification (TTI) module, which dynamically selects
a target missing tooth for prediction in current iteration. As shown in Fig. 1,
given a dental model with three missing teeth, the TTI module first selects a
missing tooth for prediction. The centroid of the target tooth is predicted and
merged with its adjacent teeth as input to a conditional point cloud diffusion
model. After predicting the first tooth, we update the dental model and iterate
the process for the remaining missing teeth. Mesh model of the predicted tooth
point cloud is reconstructed using Poisson surface reconstruction algorithm.
The TTI module ensures that the multiple missing teeth are predicted one by
one, accommodating various tooth loss patterns without case-specific retraining.
Specifically, given a dental model reconstructed from labeled CBCT segmen-
tation images, we first identify the tooth numbers of the missing teeth based
on the FDI table [I]. We then analyze their adjacent teeth, categorizing them
into direct-adjacent and indirect-adjacent teeth. Direct-adjacent teeth are the
immediate neighbors of the target tooth, while indirect-adjacent teeth are the
immediate neighbors of the direct-adjacent ones. For a standard dental model
with 28 teeth, each tooth (except the second molars) has five direct-adjacent
and four indirect-adjacent teeth in two sides, while second molars (i.e., 17, 27,
37, 47) have three direct-adjacent and two indirect-adjacent teeth. For a miss-
ing tooth with four direct-adjacent teeth, we prioritize predicting it by feeding
the point cloud of its direct-adjacent teeth into a multiple-missing-teeth (MMT)
diffusion model, which is trained to predict more than two missing teeth in the
input adjacent teeth point cloud. If no missing tooth with four direct-adjacent
teeth exists, we include indirect-adjacent teeth in one side and prioritize the
missing tooth with four adjacent teeth. This design ensures the consistency of
input data for the MMT diffusion model. For the last missing tooth, we treat it
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Fig.1. (A) The proposed framework for precise prediction of multiple missing teeth.
(B) Tooth-centroid-prompted conditional diffusion model.

as a single tooth, using its five adjacent teeth as input to a single-missing-tooth
(SMT) diffusion model trained for single-tooth prediction, as shown in Fig. 1.
After predicting one missing tooth, we update the input dental model by includ-
ing the predicted tooth, and continue to perform the TTI module to select the
next target missing tooth to predict until all the missing teeth are predicted.

2.2 Tooth-centroid-prompted Diffusion Model

To improve prediction accuracy and ensure the network identifies the correct
tooth to predict in cases of multiple missing teeth, we propose a tooth-centroid-
prompted diffusion model. In this approach, we first predict the centroid of
the missing tooth based on its adjacent teeth, then feed both the predicted
centroid and the adjacent teeth into the diffusion model as conditional input.
This approach enhances the model’s ability to accurately predict the missing
tooth by leveraging both its spatial position and its anatomical context.

Tooth Centroid Prediction To accurately generate the centroid of the target
missing tooth, we employ a tooth centroid regression method based on its ad-
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jacent teeth determined by the TTI module. This method adopts the Random
Forest Regression (RFR) algorithm to perform this task. The specific steps are
as follows: First, a random forest regression model is constructed and trained
on the labeled dataset with the 3D centroids of the neighboring teeth as input
and the missing tooth centroid as output. Then, for a target missing tooth, the
trained regression model is used to predict its centroids based on its adjacent
teeth centroids extracted from the 3D point cloud of the adjacent teeth. Next,
using the predicted centroid as the origin, a small cluster of point cloud (500
points) is generated to represent the centroid. The centroid point cloud is then
merged with the point cloud of the adjacent teeth as the conditional input to
the MMT diffusion model.

Conditional Diffusion Model In this study, we utilize conditional point cloud
diffusion models for accurate 3D reconstruction of missing teeth [18]. The point
cloud of adjacent teeth serves as the conditional input for these models. Specifi-
cally, we train two diffusion models: MMT diffusion model for predicting multiple
missing teeth, and SMT diffusion model for predicting a single missing tooth.
For multiple missing teeth prediction, the adjacent teeth inputted into the MMT
diffusion model may involve two missing teeth. To ensure the model accurately
predicts the location of the target missing tooth, we incorporate the centroid of
the missing tooth as a guide. This centroid is merged with the point cloud of the
selected adjacent teeth to form the conditional input for MMT diffusion model,
helping the model focus on the correct target tooth. In contrast, for single miss-
ing tooth prediction, we use the point cloud of five direct-adjacent teeth as the
conditional input to SMT diffusion model. In this case, the position of the target
missing tooth is clearly defined within the conditional point cloud, simplifying
the model’s task.

Both the MMT diffusion model and SMT diffusion model diffusion models are
built upon the denoising diffusion probabilistic model (DDPM) framework [18].
The loss function of the diffusion model is defined as follows:

¢ o (V/arao + me,mm))f. (1)

During the training process, the forward diffusion process gradually adds noise to
the ground truth of missing tooth ag. Here, &, is a coefficient related to the time
step t that controls the degree of noise accumulation. And € is the actual added
noise. The model uses the neural network ey, combined with the conditional
information (i.e., the point cloud of adjacent teeth) mg and the time step ¢,
to estimate the noise in the noisy data. The noisy data is given by the formula
(vVarag++/1 — aze). The loss function measures the difference between the actual
noise € and the estimated noise €y (\/5715(10 + /1 — age, mo, t). By minimizing this
loss, the model continuously adjusts its parameters to learn the true distribution
of the tooth point cloud. This enables it to accurately reconstruct 3D shape of
missing tooth from the noise during the reverse diffusion process and accomplish
the missing tooth prediction task.

£t:
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3 Experimental Results

Dataset and Preprocessing This study employed CBCT scans collected from
Stomatological Hospital of Henan Province Zhengzhou University, consisting of
130 healthy subjects, with the third molars excluded. Data preprocessing in-
volved segmenting and labeling the teeth from the CBCT images, followed by
reconstructing dental mesh models based on these segmentations. These mod-
els were then used to generate the training and testing datasets by simulating
different tooth loss patterns, with 100 subjects allocated for training and the
remaining 30 for testing.

Experimental Setup We carried out two experiments to evaluate the per-
formance of the proposed framework on single missing tooth prediction and
multiple missing teeth prediction, respectively. For comparison, we also con-
ducted similar experiments using the proposed framework but with U-net as
the backbone network on volumetric data (U-net framework) motivated by its
widespread adoption in medical imaging and 3D reconstruction tasks, as well
as its role as a standard benchmark in prior literature [6,7,8]. Note that the
U-Net baseline in our experiments utilized a high-resolution volumetric grid of
0.4x0.4x0.4mm (image size:144x144x224), minimizing discretization errors to
a clinically acceptable level. In the evaluation process, we used three numerical
metrics, Chamfer distance (CD) [10], Hausdorft distance (HD) [11], and Angu-
lar error (AE) [5], in order to systematically compare the performance of each
method. And all metrics were computed directly on the raw point clouds with
the same point number. In addition, we also performed qualitative visual com-
parisons to observe the effect of different methods under different tooth loss
patterns.

In the single missing experiment, there were 2800 pairs of training data and
840 pairs of test data (28 pairs of data were obtained from each subject). In
the experiments of multiple missing teeth (in this conference version, only the
right side of teeth, 11-17 and 41-47, were used for method development and
evaluation). We considered all the possible patterns of missing teeth with their
corresponding adjacent teeth, and finally generated 3800 pairs of training data
and 1140 pairs of test data. Each tooth has the point number of 1000, and
point number of the centroid point cloud is 500. Therefore, the point clouds
inputted to MMT and SMT diffusion models have 4500 point and 5000 points,
respectively. The diffusion model MMT and SMT were trained for 2000 epoch,
while the U-net framework was trained for 6000 epochs with the image size of
144 x 144 x 224.

Results Our method demonstrated superior performance over the U-Net frame-
work across all quantitative metrics in single missing tooth prediction, as quan-
tified in Table 1. The U-Net framework achieved Chamfer distance (CD), Haus-
dorff distance (HD), and angular error (AE) values of 1.67 mm, 3.16 mm, and
7.16° respectively, while our method significantly reduced these errors to 1.26
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Table 1. Comparison results between our method and U-net framework on the Sin-
gle missing tooth prediction. CD, HD and AE represent Chamfer distance, Hausdorff
distance and Angular error, respectively.

Tooth ID number 11 12 13 14 15 16 17
U-net | 1.72 1.88 1.46 1.60 1.61 1.99 1.99

CD(mm) 5T T.20 [ 1.14 | T.22 [ 1.16 | 1.15 | 1.40 | 1.54
HD(mm) |00t | 299 | 324 [ 3.40 [ 281 | 265 | 431 | 370

Ours | 1.96 | 2.16 | 2.17 | 2.35 | 2.20 | 2.67 | 2.56
A (degroe)| U2t | 583 | 480 [ 508 [ 460 | 519 | 667 | 608

Ours | 3.69 | 3.08 | 3.53 | 3.08 | 4.24 | 4.40 | 4.53

Tooth ID number 41 42 43 44 45 46 47
U-net | 1.23 1.24 1.43 1.22 1.34 1.94 1.71

CD(mm) 5 s T0.98 | 1.10 | 1.28 | 1.14 | 1.19 | 1.82 | 1.4

HD (mm) U-net | 2.09 2.22 3.03 2.07 2.64 4.54 3.59

QOurs | 1.53 | 2.03 | 2.16 | 1.95 | 2.15 | 2.71 | 2.58

AE(degree) U-net | 4.30 4.12 5.20 4.37 6.34 6.47 7.24

& QOurs | 3.38 | 2.46 | 3.66 | 3.89 | 4.14 | 4.24 | 4.03
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Fig. 2. Comparison results between our method and U-net framework in the case of
single missing teeth. Tooth mesh models in the dotted boxes are reconstructed from the
corresponding tooth point cloud using the Poisson surface reconstruction algorithm.

mm, 2.43 mm, and 4.48°. These enhancements confirm our method’s improved
precision in both spatial alignment and anatomical orientation prediction. As
shown in Fig. 2, visual comparisons across four representative tooth types (in-
cisor 11, cuspid 13, premolar 15, and second-molar 17) further substantiate these
quantitative findings. Our method preserves complete morphological features
while achieving exceptional detail reconstruction. Notably, our framework elimi-
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Table 2. Comparison results between our method and U-net framework on the multiple
missing teeth in two patterns.

Pattern 1 Pattern 2
Tooth ID number 11 12 13 15 16 17
CD(mm) U-net | 2.93 3.61 2.77 2.84 2.17 2.57
Ours | 1.24 | 1.16 | 1.46 | 1.22 | 1.46 | 1.81
HD (mm) U-net | 3.51 4.12 4.01 5.04 5.58 4.55
Ours | 2.08 | 2.29 | 3.52 | 2.85 | 3.39 | 3.59
AE(degree) U-net | 7.22 5.38 7.71 | 10.23 | 9.70 | 10.29
& Ours | 3.69 | 4.39 | 6.84 | 5.46 | 6.97 | 7.40
Case #1:
Tooth loss: *
11,12,13
Case #2:
Tooth loss:
11,12,13
Case #3:
Tooth loss:
15,16,17
Case #4:
Tooth loss:
15,16,17 !
Input point Grqund truth U-net framework Our method
cloud point cloud

Fig. 3. Comparison results between our method and U-net framework in multiple miss-
ing teeth prediction.

nates the dependency on auxiliary positional cues required by the U-Net frame-
work, which necessitates tooth centroid prompts for marginal tooth generation
in single missing tooth prediction.

Table 2 summarizes the quantitative results of the experiment of multiple
missing teeth prediction across two clinical scenarios: consecutive anterior tooth
loss (teeth 11-13) and posterior marginal tooth loss (teeth 15-17). The proposed
method demonstrates superior measurement accuracy compared to the U-net
framework, achieving mean reductions of 50.0% in Chamfer distance (CD: 1.30
vs. 2.60 mm), 32.5% in Hausdorff distance (HD: 2.57 vs. 3.81 mm), and 27.6% in
angular error (AE: 5.42° vs. 7.49°). These improvements validate the framework’s
enhanced capability in handling complex edentulous patterns. Fig. 3 provides
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visual evidence supporting these quantitative findings. Our method generates
anatomically plausible tooth arrangements that better approximate the ground
truth morphology, particularly in maintaining proper occlusal relationships and
interproximal contacts. The results of the ablation experiment demonstrate that
without the centroid-prompt, the generation of teeth in the multiple missing
teeth prediction becomes disordered, leading to a significant decrease in accuracy.

4 Conclusion

This study presents a unified deep learning framework to address the critical
challenges of predicting the original 3D shapes and positions of missing teeth
for dental implantation planning. By introducing a dynamic iterative genera-
tion strategy and a tooth-centroid-prompted conditional diffusion model, our
approach achieves precise 3D reconstruction of missing teeth across diverse loss
patterns without case-specific retraining. The proposed framework demonstrates
clinically relevant accuracy, outperforming conventional U-net based framework
across key metrics. Our results suggest transformative potential for improving
surgical planning efficiency, minimizing intraoperative risks, and enabling data-
driven personalized implantation.
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