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Abstract. Epilepsy affects over 50 million people worldwide, with anti-
seizure medications (ASMs) as the primary treatment for seizure control.
However, ASM selection remains a "trial and error" process due to the
lack of reliable predictors of effectiveness and tolerability. While machine
learning approaches have been explored, existing models are limited to
predicting outcomes only for ASMs encountered during training and have
not leveraged recent biomedical foundation models for this task. This
work investigates ASM outcome prediction using only patient MRI scans
and reports. Specifically, we leverage biomedical vision-language foun-
dation models and introduce a novel contextualized instruction-tuning
framework that integrates expert-built knowledge trees of MRI entities
to enhance their performance. Additionally, by training only on the four
most commonly prescribed ASMs, our framework enables generalization
to predicting outcomes and effectiveness for unseen ASMs not present
during training. We evaluate our instruction-tuning framework on two
retrospective epilepsy patient datasets, achieving an average AUC of
71.39 and 63.03 in predicting outcomes for four primary ASMs and
three completely unseen ASMs, respectively. Our approach improves the
AUC by 5.53 and 3.51 compared to standard report-based instruction
tuning for seen and unseen ASMs, respectively. Our code, MRI knowl-
edge tree, prompting templates, and TREE-TUNE generated instruc-
tion—answer tuning dataset are available at the link.
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1 Introduction

Epilepsy is one of the most common neurological disorders, affecting over 50
million people worldwide [26]. Antiseizure medications (ASMs) are the first-
line treatment for newly diagnosed patients, aiming to achieve seizure freedom,
yet only about half of newly diagnosed patients achieve seizure control with
their initial ASM [3]. ASM selection primarily depends on epilepsy type, clinical
history and diagnostic findings. However, since ASMs exhibit similar efficacy
for specific epilepsy types [19], ASM selection often follows a “trial and error”
approach, requiring sequential trials of different ASMs if seizures persist, which
results in multiple ineffective treatments before identifying the right ASM [4].

The epilepsy research community has explored machine learning (ML) and
deep learning (DL) for ASM recommendation by identifying patterns linking
patient health data to ASM outcomes [5]. Early studies used simple ML models
such as kNN and random forests to predict the response to ASM based on genetic
data [21,23]. Recent works have incorporated the clinical history, demographics,
and risk factors of patients, employing SVM, XGBoost, and MLP to predict
their ASM outcomes [6,11]. More recently, researchers have tapped into applying
ML for analyzing routine electroencephalogram (EEG) data to predict the most
effective ASM to achieve seizure free outcome [8,22].

The International League Against Epilepsy recommends the use of Magnetic
Resonance Imaging (MRI) for newly diagnosed epilepsy patients, as it can detect
structural lesions that can guide treatment decisions and epilepsy management.
Early MRI findings help clinicians determine whether to escalate ASM trials
or consider adjunct therapies like lesion resection [13]. Lesions like focal corti-
cal dysplasia and mesiotemporal sclerosis have well-documented links to clinical
outcomes and recognized patterns of drug responsiveness or resistance [1|. Re-
search on MRI-based ASM outcome prediction has primarily relied on manually
extracted features and simple ML models or CNNs, limiting their predictive
power [12,14,24]. Moreover, existing studies operate in a closed-set setting, sim-
ply encoding ASMs as categorical input variables during training, which limits
their ability to predict outcomes for unseen ASMs.

To the best of our knowledge, no prior work has explored recent biomedical
foundation models [15, 28] for ASM outcome prediction. These models, trained
on large-scale biomedical images and text, have demonstrated strong medical
context understanding. However, they have struggled with custom and unseen
downstream tasks, diverse demographics, and open-set questions [20,27]. To
address this, the broader vision and natural image research communities have
adopted instruction tuning [2,16] as an efficient fine-tuning approach to improve
model performance for custom downstream tasks.

Our contributions: In this work, we explore ASM outcome prediction using
MRI scans and reports. Our main contributions are: 1) Foundation Model
Adaptation- We adapt biomedical vision-language foundation models to assess
their efficacy for the task of ASM outcome prediction; 2) Knowledge Tree
Driven Contextualized Instruction Tuning (TREE-TUNE)- To enhance
the performance of foundation models, we construct a contextualized instruction-
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Fig. 1. Instruction-tuning approaches: (a) MRI report-based (b) MRI scan and report-
based (c¢) Proposed TREE-TUNE: Knowledge Tree with MRI scan and report-
based. Includes verb-noun pairs and an instruction-answer sample for each approach.

tuning dataset. Using an expert-built MRI knowledge tree, we categorize MRI
reports and scans, generating data-specific instruction-answer pairs with GPT-
4o for improved fine-tuning; 3) Molecular Feature Integration- To enable
outcome predictions for unseen ASMs, we encode ASMs as Simplified Molecular
Input Line Entry System (SMILES) [25] representations, enabling models to
learn molecular features instead of treating ASMs as categorical variables.

We benchmark our approach on two retrospective epilepsy datasets, achieving
a 5.53 AUC improvement over standard text-based instruction tuning for four
primary ASMs. Notably, our model attains 63.03 AUC for predicting outcomes
of three unseen ASMs it has never encountered during training.

2 Proposed Method

Our approach has two components: (1) Constructing a contextualized instruction-
tuning dataset and (2) Fine-tuning foundation models on the built dataset.

2.1 Construction of Contextualized Instruction Tuning Dataset

Knowledge Tree of MRI entities : Our in-house neurologists and clinicians
developed a hierarchical knowledge tree to categorize and annotate entities in
MRI reports. This taxonomy is derived from clinically and systematically val-
idated anatomical locations, lesion types, and imaging features [10]. The tree
has three primary nodes: Element — Includes types of lesions, malformations,
tumors, and vascular abnormalities; Location — Represents the anatomical po-
sitioning of elements; and Other Features — Covers imaging characteristics such
as atrophy, calcification, mass effect and others. The tree has a depth of 4 levels
from the root with Element being the most complex, comprising four primary
subcategories and over 50 distinct subtype elements. Location includes three
subcategories with 15 distinct positions, while Other Features covers 14 distinct
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imaging attributes. A partial view of the knowledge tree is shown in Fig 1(c),
with the full tree available in our code repository here.

Contextualized Data-specific Generation of Instruction-Answer Pairs
Traditional instruction-answer pair generation follows two strategies: 1) Text
based generation, where LLMs like GPT-4 generate synthetic pairs from cap-
tions or reports [15] (Fig 1(a)). 2) Multimodal generation, where both images
and text are provided to multimodal LLMs (e.g., GPT-4v) for enhanced qual-
ity [2] (Fig.1(b)). In contrast, our method TREE-TUNE (Fig. 1(c)) enhances
instruction generation by incorporating three inputs into GPT-40: an MRI scan,
its corresponding report, and the MRI knowledge tree. GPT-40, prompted as
an “Expert Biomedical Al Assistant specializing in MRI analysis” (temp = 0.1),
then generates contextualized instruction-answer (IA) pairs based on observed
MRI entities from scan and report and their hierarchical placement in our built
knowledge tree. Our TREE-TUNE generated 4,896 TA pairs across 274 patient
cases (median: 24 TA pairs per patient; average length of instruction: 49.1 words).

For example, if an MRI report mentions “periventricular nodular heterotopia”
and “white matter hyperintensity”, the knowledge tree links them to their nodes:
Lesion— Heterotopia— Periventricular-nodular and Other Features respectively
(Fig 1(c)). This enables GPT-40 to generate more nuanced instructions (high-
lighted in blue in Fig 1(c)), producing more context-aware answers than stan-
dard prompting, which embeds terms directly into the instructions (highlighted
in red in Fig 1(a),(b)). Similarly, presence of a lesion in the “left mesial tempo-
ral lobe” in the MRI scan links it to Location— Lateralization nodes, resulting
in knowledge-informed instructions and more case-specific responses (compare
question 3) and question 2) from Fig 1(b) and (c)).

By integrating the knowledge tree with MRI scans and reports, TREE-
TUNE enhances instruction specificity and contextuality. The verb-noun pair
distribution (Fig. 1) shows that our approach yields a richer noun set per verb
than standard methods, effectively capturing MRI entities and generating more
refined instructions, as further analyzed in the Results section.

2.2 Instruction-Tuning of Foundation Models

To evaluate the impact of our contextualized instruction-tuning dataset, we fine-
tune foundation models following LLaVA [17] (Fig 2). Given an MRI scan X7,
a pretrained biomedical vision encoder extracts visual features Z; = g(X7),
which are projected into the language embedding space H; via a trainable ma-
trix Wy. The ground truth ASM, X 455/, is represented in SMILES format [25]
and processed as Zasy = d(Xasnr) using the pretrained graph-based drug en-
coder MoLeR [18], which models molecular structures as graphs and encodes the
atoms, bonds, and other structural features of the ASM drug molecule. ASM em-
beddings Zgps are then projected into the language space H a5 using another
trainable matrix Wagas.

For each MRI-ASM pair, we generate a contextualized instruction-answer
set using the knowledge tree, MRI scans, and reports. These pairs {(X ;,X by,


https://github.com/khoapham154/Knowledge-Tree-Driven-Contextualized-Instruction-Tuning-of-Foundation-Models/blob/main/MRI_entities/Knowledge_MRI_Tree.conf

Contextualized Instruction Tuning for Epilepsy Drug Recommendation 5

Anti-seizure Medication

%< & D oad q
2w &=z answer (X,")
Sss S
& e g g—» —_ ¥ — —
=3
§_ g2 S Based on the findings, the —_specific
G g ASM_ should be recommended (X,")
Vs H, Q
MRI Scan (X) g Generated TextAnswer (X" +X,")
2
=3 - .
oS el - [ o
OfCCl;\lC(ggg)C(;CC 1 E 5 . 0% Generated Answer
8
. == — S =2 = Tokens (H,)
SMILE Encoding EFE 5 W2
=3 a ~
= (¢
g g

(Xasm) Zsm Hsm 8_ HMLP

2, (Wour)

-speci i L
&) e pe S Emer YV b

instruction (X,") % = seizure freedom YASM  seizure freedom]

non-freedom|

Based on the findings, should - specific
ASM - be recommended for achieveing

eizure freedom?
Unified Instruction (X‘lr) % Frozen _
Instruction (X," wY,f) (A Trainable

Fig. 2. Our overall framework for instruction-tuning of models to generate answer and
predict response outcome for an input MRI scan,an ASM drug, and instruction prompt.

JZIUM O,
paurenaIg
AR
'

(X2,X2),...(X), X))} serve as ground truth for fine-tuning, where N repre-
sents the number of pairs per sample. The instruction-answers are structured
sequentially, ending with a “unified instruction-answer pair” (X[, X)) (Fig 2)
prompting the binary seizure-free response outcome (Yes/No) for the given ASM.
The combined instructions are tokenized into embeddings H, via a pretrained
tokenizer [15] and the language model f (Vicuna [7]) is fine-tuned on the gen-
erated tokens using its original autoregressive objective. Following [17], for an
instruction-answer pair of length L, we compute the probability of the target
answer X, by:

L
P(Xal X1, Xasm, Xg) = Hpqs(wi | X1, Xasar Xg, - Xa, ;) (1)
i=1

where ¢ are trainable parameters of the language model, X, _, = (X g<:t

XY ), and X, _, = (X7 _, + X[ _) represent the combined n' instruction-
answer pair and the unified instruction-answer pair tokens before the current
predicted token x;.

In addition to the autoregressive training objective, we use binary cross en-
tropy loss to optimize the prediction of response outcome for an ASM. As shown
in Fig 2, we pass the generated answer tokens H, to a trainable layer Woyr fol-

lowed by a sigmoid() function to compute the probability of response outcome:

1
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where Wy and by are the trainable parameters of Woyr, H, are the generated
answer tokens, and §%g,, is the predicted probability of seizure freedom/non-
freedom for MRI scan X; and the ASM X a55,. We then apply the standard
BCE loss between the predicted outcome probability and the ground truth [1,0]
corresponding to seizure freedom / non-freedom.

Our framework uses direct fine-tuning, freezing the pretrained biomedical
vision encoder gy and drug encoder d,,, while updating only the projection ma-
trices Wy (image), Wagnr (drug), Wour (outcome) and the language model fy.
We optimize the network using both autoregressive and BCE loss with equal
weighting. During inference, we only instruct the framework with the unified
instruction X ;] and obtain the generated answer and the outcome response in
the manner described earlier.

2.3 Training & Implementation Details

To construct the instruction-tuning datasets, we used the GPT-40 API (Jan—Feb
2025). No data augmentation was applied to MRI scans. Fine-tuning started
with a learning rate of 1 x 10™%, using a cosine scheduler, 5-epoch warm-up, and
a constant schedule type. Training ran for 100 epochs with a batch size of 16
per device using the AdamW optimizer. Following prior ASM recommendation
studies [11], we evaluated performance using AUC, precision, and recall. Addi-
tionally, semantic similarity matching assessed the fine-tuned language model’s
responses. Experiments were conducted on NVIDIA A100 and A6000 GPUs.

3 Datasets and Splits

We retrospectively collected two private datasets: ASM-ED1, which is avail-
able upon request for research purposes only, and ASM-ED2, which could be
curated from the Human Epilepsy Project [9]. Both datasets originate from dis-
tinct cohorts of newly diagnosed epilepsy patients. Seizure control was assessed
one year after starting the first ASM, with success defined as seizure freedom
while maintaining the same ASM.

ASM Distribution - Patients were administered with one of the seven ASMs:
carbamazepine, lamotrigine, levetiracetam, oxcarbazepine, phenytoin, topira-
mate, or valproate. The most frequently used were levetiracetam, lamotrigine,
oxcarbazepine, and carbamazepine, having 250, 79, 37, and 24 cases in ASM-
ED1, and 116, 41, 39, and 25 cases in ASM-ED2. The remaining three ASMs
had 54 cases only in ASM-ED1. ASM-ED1 included 444 patients (112 seizure-
free, 332 not), while ASM-ED2 had 247 patients (62 seizure-free, 185 not).
Train and Test splits - We use 5-fold cross-validation with an 80,/20 train-
validation split for both datasets. ASM-ED1 is used to evaluate unseen ASM rec-
ommendation, as it includes all seven ASMs. Training is limited to the four most
common ASMs (levetiracetam, lamotrigine, oxcarbazepine, and carbamazepine),
while valproate, topiramate, and phenytoin are encountered only in testing.
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4 Results

We analyze the lexical composition of our instruction-tuning dataset and also
benchmark various biomedical foundation models (vision and vision-language)
alongside different instruction-tuning approaches for ASM outcome prediction.

4.1 Lexical Analysis of Instruction-Tuning Approaches

We analyzed the lexical composition of instructions from different generation
approaches (Table 1). TREE-TUNE shows the richest set of nouns and ad-
jectives, significantly surpassing MRI report- or scan-based methods. Its sig-
nificantly higher noun percentage captures more epilepsy-specific entities (e.g.,
lesion-encephalocele-gliosis, lateralization-right), while significant proportion of
adjectives enhance descriptive detail, improving characterization of epilepsy-
related MRI findings, as also shown in the verb-noun pair chart (Fig. 1).

Table 1. Comparison of lexical composition (in terms of %) across all instructions for
the different instruction tuning approaches on both datasets combined.

Dataset / Lexical noun |adjective|adverb|verb|numerical |preposition

MRI report [15] 34.1| 16.3 1.5 [12.9 0.7 11.9
MRI scan + report [2] [36.9| 12.3 0.8 |15.6 0.1 9.4
TREE-TUNE (Ours)|39.9| 20.9 1.6 [15.6 0.7 3.6

4.2 ASM Outcome Prediction Performance

We evaluate ASM outcome prediction in two settings: seen ASMs (trained) and
zero-shot unseen ASMs (not seen during training). Table 2 shows seen ASM
results, comparing vision-only, vision-language, and instruction-tuning methods,
including the naive prompt “Describe the findings in the MRI scan”. Instruction-
tuning consistently outperforms other methods, with our approach achieving the
highest AUC (76.45 (p=0.012)) on ASM-ED1, 63.03 (p=0.041) on unseen ASMs,

Table 2. Seizure outcome prediction performance for popular seen ASMs.

Method / Dataset / Metric ASM-ED1 ASM-ED2
! AUC (%)][Precision (%)|Recall (%)|AUC (%)]|Precision (%)[Recall (%)
BiomedCLIP Vision [28] 59.251.15 | 48.561.12 51.201.14 | 55.531.30| 46.011.20 49.501.30
LLaVA-Med Vision [15] 60.371.12| 49.583.11 52.432.13 | 58.911.25 | 48.213.02 51.749.01

BiomedCLIP Vision-Language [28]]65.001.90 | 54.021.73 53.012.32 |51.863.72 | 52.002.20 51.012.50
Instruction-Tuning Approaches

Naive 74.712_13 69.635_15 63.591_24 61.363_65 67.035_53 62.311_65

MRI report [15] 71.544_35 68.23475 62.87233 60.215_12 58.445_97 52.233_44
MRI scan + report [2] 75.245.81 69.574.86 65.764.32 |61.754.87 61.861.16 60.243.91
TREE-TUNE (Ours) 76.454.21 | 70.526.12 67.856.57 |66.336.15 | 61.944.92 55.426.92

Average Increment ‘ 4.94 2.29 4.98 6.12 3.5 3.19
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Table 3. Seizure outcome prediction performance for unseen ASMs.

Method / Metric AUC (%) |Precision (%)|Recall (%)
BiomedCLIP Vision [28] 55.01 35.03 30.14
BiomedCLIP Vision-Language [28]| 58.05 40.04 39.07

Instruction-tuning approaches

Naive 60.12 45.06 48.68
MRI report [15] 59.52 51.03 59.05
MRI scan + report [2] 60.07 56.05 61.04
TREE-TUNE (Ours) 63.03 60.06 65.07

Average Increment ‘ 3.51 ‘ 9.03 ‘ 6.02

showing a 5.53% average AUC gain over standard MRI report-based methods.
ASM-ED2 has fewer samples and greater hospital variability, while ASM-ED1
(from only two hospitals) performs better. The challenging ASM-ED2 and unseen
ASM settings highlight TREE-TUNE’s strong performance.

Zero-shot prediction We evaluate TREE-TUNE’s zero-shot capability on
three unseen ASMs excluded from ASM-EDI training. As shown in Table 3,
our method improves AUC by 3.51% over MRI report-based instruction tun-

ing, outperforming others and maintaining robust generalization.

Fig. 3. An exemplar case to demonstrate the generated response of our TREE-TUNE.

Axial view Coronal view Sagittal view

For the
patient with this MRI image and Levetiracetam drug,
the probability of being seizure free cannot be
estimated. From the MRI image, we can observe
potential hippocampal atrophy in the axial view, which
suggests mesial temporal sclerosis (MTS). Coronal
view shows medial temporal lobe asymmetry
indicating possible structural abnormalities. The
sagittal view shows an intact corpus callosum and
ventricular system, with no gross malformations. @

Gold standard MRI report:

Findings of involving the
and underlying white matter.

Transmantle sign is highly suggestive of

abnormality
involving the cortex of the
with blurring of the and
transmantle tracking through
the underlying white matter to the margin.

Few scattered punctate foci of T2 hyperintense signal
abnormality seen throughout the
matter of the frontal lobes that are nonspecific.
appears subtly T2 hyperintense with
architectural changes. No hemorrhage, restricted
diffusion, mass effect, or midline shift. Normal
, brainstem, cerebellum, and ventricles.

Ground truth outcome prediction: Not seizure free.

Based on the MRI scan, please
recommend the probability of seizure freedom
for Levetiracetam ASM and therefore suggest
whether the patient can achieve seizure
freedom using this drug? Give detailed
reasoning based on MRI analysis with
anatomical details and implications for
epilepsy.

The
probability of being seizure~free cannot be
estimated. The MRI shows right hippocampal
sclerosis, often linked to mesial temporal lobe
epilepsy (MTLE). While Levetiracetam can treat
mTLE, its efficacy depends on factors such as
overall health, severity of epilepsy, and
anatomical details on MRI. Given right
hippocampal sclerosis, the patient may have
more challenging seizures to control. 7

TREE-TUNE [OURS] (Semantic similarity: 0.94):
For the patient with this MRl image and
Levetiracetam drug, the probability of being
seizure free is 31.09%. Therefore, predicted
outcome is not seizure free.

In the axial view, there is a subtle ill-defined T2
hyperintense signal abnormality involving the
cortex of the left middle frontal gyrus,
accompanied by blurring of the gray-white
junction and a transmantle T2 hyperintense
signal extending through the underlying white
matter toward the ventricular margin. A few
scattered punctate foci of T2 hyperintense
signal abnormality also appear throughout the
juxtacortical white matter in the frontal lobes.

Coronal view shows the left hippocampus with
slight T2 hyperintensity. Sagittal view confirms
the presence of cortical dysplasia in the left
middle frontal region, with overall normal
ventricular.
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4.3 Qualitative Analysis of TREE-TUNED vs. Standard Models

Fig 3 compares TREE-TUNE, GPT-40, and LLaVA-Med responses to a zero-
shot prompt and MRI scan. GPT-40 and LLaVA-Med mislabel findings of
, , and
as hippocampal sclerosis and mesial temporal lobe epilepsy. In contrast,
TREE-TUNE accurately identifies these features, achieves the highest semantic
similarity, and predicts ASM probability aligned with the ground truth. This
demonstrates superior anatomical understanding and a step towards reasoning.

5 Conclusion

This work evaluates the effectiveness of biomedical foundation models in predict-
ing ASM outcomes from MRI scans and reports. We introduce TREE-TUNE, a
novel MRI knowledge tree driven contextualized instruction-tuning framework
to enhance model performance beyond standard instruction-tuning strategies.
Moreover, our approach not only achieves high accuracy in recommending com-
monly prescribed ASMs but also gives reasonable performance for unseen ASMs.
Our work marks a foundational step toward developing a reasoning-based ASM
recommendation system, paving the way for personalized epilepsy management.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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