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Abstract. Ejection fraction (EF) estimation in echocardiography is a
key indicator to examine cardiac functions and to determine the opti-
mal treatments for patients prone to heart dysfunctions, such as heart
failure. Recently, machine learning has shown promising predictive per-
formance, as diagnostic tools, to estimate EF using echocardiograms.
However, most state-of-the-art models have overlooked diversity of phe-
notypes in echocardiography, derived from patient’s demography (e.g.,
sex and age). In this study, we propose a novel integrative bipartite
graph neural network (IBi-GNN) that integrates demographic variables
of patients with echocardiograms to improve the EF predictive perfor-
mance and model interpretability in precision medicine. In the experi-
ments, IBi-GNN significantly reduced the estimation errors compared to
the benchmark models, and the significant improvement was statistically
assessed. We also show that IBi-GNN is interpretable to identify interac-
tion between the multi-modalities. The interpretation provides compre-
hensive understanding of the relationships between demographic factors
and cardiac structures. The open-source codes are publicly available at
https://github.com /datax-lab/IBi-GNN.
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1 Introduction

Accurate estimation of left ventricular ejection fraction (EF) in echocardiogra-
phy is essential to make the optimal treatment recommendations for diagnosis,
prognosis, and treatment of patients with heart failure [18]. The EF measure-
ments categorize heart failure types into three: (1) heart failure with reduced
EF (HFtEF, EF < 40), (2) heart failure with mid-range reduced EF (HFmEF,
40<EF<50), and (3) heart failure with preserved EF (HFpEF, EF>50). In par-
ticular, patients with heart failure with reduced ejection fraction (HFrEF) con-
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stitute approximately 50% of all heart failure cases, and they are more likely to
have coronary heart disease or chronic kidney disease [11].

Echocardiography is the most common modality to measure ejection fraction,
due to the advantages of its low cost, utility, and safety [15]. An echocardiogram
creates temporal pictures of the beating hearts using sound waves in echocar-
diography. Ejection fractions can be estimated by characterizing left ventricular
volume difference at end-systole (ES) and end-diastole (ED). However, manual
estimation of EF using echocardiograms is a tremendously time-consuming task
involving frame detection and left ventricular volume tracing, which is prone to
human error.

Recently, deep learning has succeeded in automatic analysis of echocardio-
grams, for deep learning is capable of capturing spatio-temporal patterns from
videos. A number of deep learning models has improved the predictive perfor-
mance of ejection fraction estimation. A multi-task deep learning model analyzed
echocardiogram using left ventricle segmentation and landmark detection, re-
flecting the conventional clinical workflow for ejection fraction calculation [10].
A 3D Convolutional Neural Network (3D-CNN) captures the spatio-temporal
patterns in echocardiogram video clips [4,6,14]. A transformer model efficiently
incorporated temporal patterns over the entire frames [13]. A graph neural net-
work (GNN) learned the relationships between echocardiogram frames to esti-
mate EF from echocardiogramic videos, identifying important frames for the
estimation [12].

Understanding demography-based spatiotemporal patterns in echocardiogra-
phy is critical to improve ejection fraction estimation in precision medicine. One
of the conventional approaches is data integration of demographic variables on
echocardiograms. A number of deep learning studies have integrated tabular data
(e.g., demographic/clinical variables) with medical imaging data. A transformer
fusion model developed a unified integration approach by selectively focusing on
relevant variables in the integration of each multi-modal data [25]. Contrastive
learning-based models aligned multi-modality within the same samples, by max-
imizing their similarity in the latent feature space [7,21]. A GNN-based model
integrated multi-modal data using a graph for survival prediction [5]. However,
such integrative approaches focus on combining the multi-modal information
rather than identifying their interaction effects. Furthermore, to the best of our
knowledge, there is no computational tool that predicts ejection fractions based
on the interaction effects with demographic variables in echocardiography, al-
though a number of literature has addressed the patients’ demographic effects
on cardiac structures and functions on echocardiography [3,17].

In this study, we propose a novel integrative deep learning model (named
IBi-GNN) that characterizes interaction effects between patients’ demographic
factors and echocardiogramic visual features and improves the predictive perfor-
mance. IBi-GNN identifies demography-specific echocardiogramic features which
are non-linearly associated to clinical outcomes (e.g., ejection fraction). The main
contributions of the study are: (1) we present a novel integrative deep learning
model, IBi-GNN, designed for identifying demography-specific visual features,
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Fig.1: IBi-GNN consists of: (1) the video embedding layers from echocardio-
grams, (2) the demography embedding layers, (3) the bipartite graph layers,
and (4) the output layers. The embedding layers extract latent variables of each
modality, and the bipartite graph layers captures their interactions.

via bipartite graph layers, (2) IBi-GNN showed statistically significant improve-
ment on the EF estimation using echocardiograms in the experiments, and, (3)
the identified demography-specific patterns can be leveraged, as new clinical
knowledge, to make personalized treatments in precision medicine.

The next sections are organized as follows. The details of the proposed
method are described in Section 2. The dataset and the experimental results
are presented in Section 3. The interpretation and analysis of this study are
discussed in Section 4. Finally, conclusions are presented.

2 Method

We propose a bipartite graph neural network that integrates echocardiogram
and demographic variables to estimate ejection fraction by characterizing their
interactions. Let an echocardiogram be & € RT*H*W for the T frames of W x H-
sized color images, and demographic factors ® € R where Py is the number of
demographic variables. In this study, the demographic variables include age, sex,
and Body Mass Index (BMI), calculated with height and weight. The embedding
layers extract latent variables of each modality, and the bipartite graph layers
captures their interactions. The bipartitie graph layers in the model can be
trained to reflect interaction between demographic variable and echocardiogram
features.

2.1 Model design

The architecture of the proposed model consists of the following layers: (1) em-
bedding layers for an echocardiogram, (2) embedding layers for demographic
factors, (3) bipartite graph layers, and (4) output layers (Fig. 1). The embed-
ding layers extract video/demographic latent features from the two data modal-
ities separately. The embedding layers for an echocardiogram generate the video
latent feature. A video backbone model (e.g., video vision transformer [1], 3D-
ResNet [9]) extracts video features. Then, time invariant spatial features are
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generated by 1 x 1 3D convolution with d dimensions. The time invariant spa-
tial features are represented by Hy = {u;|1 < i < Q¢}, where u; € R1*9 is i-th
features of an echocardiogram, and Q¢ is the number of the low-ranked time
invariant spatial features.

The embedding layers for demographic variables encode each variable to
a latent vector though data reconstruction modules. The modules consist of
encoder-decoder layers for the reconstruction of the input variables. The j-th de-
mographic variable, denoted as ©, is reconstructed to 35, by v; = Encoder(9;)
and C‘jj = Decoder(v;). The encoder and decoder layers are comprised of fully
connected layers with activation functions (i.e., autoencoder). Through the re-
construction learning, each demographic variable is encoded into Hy = {v,|j €
{age, bmi, sex}} , where v; € R1*? is the j-th demographic latent variable.

In the bipartite graph layers, the bipartite graph, G = (U, V,E), consists
of two distinct sets of nodes, U for video features and V for demographic fea-
tures. E C U x V is a set of edges represented by weighted adjacency matrix,
A € RUVIHIVDX(AUIHIVD | The proposed model considers one-way directed edges,
only from the demographic set to the echocardiogramic set, which represent
demographic interaction into echocardiograms as Ay ;. The bipartite graph
layers consist of L layers, each layer propagates the embeddings through graph
convolutional networks (GCN) [8]. Let 7Y and g (0 <1 < L) be the I-th

hidden embedding for the nodes of U and V, respectively. H&l) and Hl(,l) are
represented as:
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where H(UO) and H‘(/0 ) are the video and demographic embedding features re-
spectively, which are introduced from the embedding layers. A is the normalized
adjacency matrix, W' and ©' learnable weight parameters, and o is an activation
function (i.e., ReLU in this study).

The output layer estimates ejection fractions from the video/demographic

hidden embedding. The video hidden embedding, H [(JL), produces a vector, h,,,
by the global average pooling layer. The video feature, h,, is stacked to the
demographic feature matrix, HéL), resulting in the output matrix, G. Then, an

ejection fraction is computed by through fully-connected layers.

2.2 Optimization

IBi-GNN optimizes the parameters by simultaneously minimizing both the re-
gression loss and the reconstruction loss, as defined by the total loss function:
Ltotal — [regression | pauxiliary The regression loss uses weighted mean squared
error (MSE) by kernel density estimation in (2), due to the data imbalance
in terms of ejection fraction rates [20]. Each sample is weighted by the kernel
density function (f,(-)) and hyper-parameter («) that determines the degree of
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weighting. In the mean time, the auxiliary reconstruction loss optimizes the re-
construction of demographic embedding. The reconstruction loss takes the sum
of the mean squared errors of the continuous variables and cross-entropy losses
of the categorical variables in (3).
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where N is the number of data sample, y; is a ground truth value, y; is model
estimation, and p” is the predicted probability value.

3 Experimental Results

3.1 Dataset and data preprocessing

We used the publicly available EchoNet-Pediatric EF dataset [16], which consists
of echocardiogram video clips from two standard views, parasternal short-axis
(PSAX) and apical four chamber (A4C), along with demographic variables. In
this study, we utilized only the PSAX view. The image resolution of the echocar-
diograms was 112 x 112 pixels, and the corresponding ejection fraction (EF)
values were provided as labels. The demographic variables included sex (57%
males, 43% females), age (10.16 = 5.4 years), weight (42.43 + 25.8 kg), and
height (137.37 & 41.6 cm). After filtering out with missing values, we used 4,294
samples, containing both video and demographic data. For the echocardiogram
data, we performed a video sampling stratgy to ensure a fixed number of video
frames from each echocardiogram, each consisting of one or more cardiac cycles,
with the number of frames varying per cycle [13]. Specifically, We selected one
frame every 4 frames from each video, resulting in a total of 36 frames per video.
To preprocess the demographic variables, we considered BMI instead of weight
and height separately, along with sex and age. Additionally, we removed outliers
from the BMI, weight, and height variables using the interquartile range (IQR)
method to enhance the data quality.

3.2 Experimental design and implementation

We compared the performance of our model with current state-of-the-art bench-
mark methods, repeating the experiments twenty times for reproducibility. In
each experiment, the data is split to 80% for training, 10% for validation, and
10% for testing. We normalized data using z-score normalization with the train
data, and then the parameters were applied to the validation and the test data.
We considered contrastive integration (Contrastive) [7], transformer integration
(Transformer) [25], and graph attention network integration (GAT) [5], as the
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Table 1: The performance comparison with the benchmark models. The best
results are in boldface. * and ** indicate statistical significance compared to the
second best integrative models (Wilcoxon signed-rank test, p<0.05%, p<0.01**).

Modality Method MSE MAE R2
IBi-GNN (Ours)|29.31 + 3.87**|3.95 4+ 0.18**|0.73 £ 0.05*
Echocardiogrm GAT [5] 31.50 + 3.85 4.07 + 0.18 0.67 4+ 0.06

& Demography | Contrastive [7] | 40.80 £ 4.70 4.50 £ 0.25 0.63 £ 0.10
Transformer [25]| 37.55 £+ 5.07 444 £ 0.24 0.58 £ 0.09
EchoCoTr [13] 34.27 £ 4.12 4.44 £+ 0.36 0.67 £ 0.04
R(Z+1)D [16] | 30.39 £ 3.60 | 4.06 £0.14 | 0.70 £ 0.04

Echocardiogram

benchmark of the integrative approach. We also included recent models that pre-
dict EF using echocardiogram data only, such as the vision transformer-based
model (EchoCoTr) [13] and a CNN-based model (R(2+1)D) [16], as baseline
benchmark. For the implementation of Contrastive, we replaced the original
2D image backbone model with a video backbone model and further optimized
the number of fully connected layers (i.e., 2) and the hidden dimensions (i.e.,
128) to apply to the EF prediction using echocardiogram. For Transformer, two
multimodal latent features were integrated through the cross-attention mech-
anism proposed in [25]. For GAT, two GAT layers with hidden dimension of
64 were considered in the graph neural network, enabling the capture of com-
plex relational structures in the data [5]. For the fair comparison in the inte-
grative benchmark models, we used EchoCoTr as the video backbone model,
which demonstrated better performance compared to R(2+1)D. We optimized
the model parameters and hyperparameters, including the number of layers, hid-
den dimensions, learning rate, optimizer, and batch size, to minimize loss on the
validation data for all the benchmark models.

For IBi-GNN, we designed the architecture of the demographic embedding
layers with fully connected layers with a hidden dimension of 128, and the bipar-
tite GNN layers with 2-layers with hidden dimensions of 64 and 128, respectively.
For ejection fraction estimation, we used two fully connected layers: the first with
a hidden dimension of 512, followed by an output layer with a dimension of 1.

We trained the model using the Adam optimizer with emperically optimized
hyper-parameters: a learning rate of le-4, first and second moment estimates of
0.9 and 0.999 respectively.

3.3 Results

We computed Mean Squared Error (MSE), Mean Absolute Error (MAE), and
coefficient of determination (R?) to evaluate the ejection fraction prediction in
the twenty experiments. The proposed model, IBi-GNN, outperformed the other
benchmark models, showing the lowest MSE of 29.314+3.87, MAE of 3.95+0.18,
and the highest R? of 0.7340.05 (Table 1). IBi-GNN showed enhanced predic-
tive performance compared to the benchmark models (GAT, Contrastive, and
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Transformer) of the integrative approach, and its improvement was statistically
assessed by Wilcoxon rank sum test (p < 0.05). IBi-GNN also showed the im-
proved performance compared to the benchmark that used only echocardiogram.

4 Model interpretation

Under Normal
weight weight
(BMI<18) | (18<BMI<25)

Subgroup- Early Middle
specific | childhood | childhood
attribution | (Age<6) | (6<Age<i2)

Adolescent
(12<Age<18)

(b)

Fig.2: (a) The edges of the bipartite GNN layers are visualized, reflecting de-
mographic interactions with echocardiogram. The corresponding echocardiogram
pattern of each video node vector u; is highlighted. (b) Visualization of subgroup-
specific attribution difference.

Ibi-GNN is an interpretable model that can capture relationships between
demographic variable and echocardiogram features using bipartite GNN layers.
For the model interpretation, we examined the bipartite graph layers learned
with the training dataset. We computed importance scores of the edges of the
bipartite graph layers by using GNN Explainer [24]. The interactions between de-
mographic variables (vege, UBMT, Usez) and the echocardiogramic visual features
(uq, ..., ug) are illustrated in Fig. 2a, where the importance scores are represented
by line weights. Visual feature maps on the nine echocardiogramic visual features
(top) and three demographic variables (bottom) are visualized using DeepLift in
Fig. 2a [19]. For instance, u; mainly highlights the top-left corner and centers,
whereas us are mainly associated to the top-middle and centers.

The learned bipartite graph shows that the echocardiogramic features are
associated with the demographic variables with different weights. The identi-
fied visual features can be interpreted as demographic-specific features in the
echocardiogram. Age, BMI, and sex each have distinct regions associated with
ejection fraction. We discovered that wo,us, and ug are mainly associated to
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BMI, age, and sex, respectively, from the learned bipartite graph. For instance,
the visual feature ws, which are mainly associated with age, are highlighted in
the center and top-right. The visual feature associated with BMI is highlighted
in the center and top-middle corner. The visual feature associated with sex is
highlighted in the bottom-middle region. The highlighted spots are well-aligned
with clinical domain knowledge. In particular, the visual feature in the top-center
corresponds to the area of epicardial adipose tissue at the echocardiogram, which
is a significant adipose depot situated near the heart. This association between
the epicardial adipose tissue and BMI has been reported [2]. Furthermore, our
model identified the relationship of sex and the variations in both left ventricular
and right ventricular volumes which underscore the nuanced influence of gender
on cardiac structures.

To examine whether these regions differ across subgroups, we further visual-
ized the subgroup-specific attribution differences by comparing the attribution
value for each subgroup with the overall mean attribution value (Fig. 2b). For
the analysis, we categorized the pediatric age groups into early childhood, middle
childhood, and adolescence [23], and the BMI groups into underweight, normal
weight, and overweight based on [22].

In the group of 12 years and older, echocardiographic features are highly
scored in the centers on the heart’s central regions—Ilikely the left ventricle
or interventricular septum—potentially reflecting increased myocardial mass or
wall thickness associated with matured cardiac workload. In contrast, the 6-12
years old group and under 6 years old show a shift in emphasis toward the
outer regions, such as the atria or peripheral ventricular zones, suggesting a
transitional phase in cardiac development. Meanwhile, the group under 6 years
old exhibits a relatively even distribution across the echocardiogram, displaying
a notably uniform pattern indicative of an immature myocardium with minimal
regional specialization.

For BMI-related regions, underweight individuals emphasize the lower outer
myocardial regions, likely reflecting altered myocardial strain, due to reduced
cardiac preload and ventricular wall stress. Those with a normal weight demon-
strate a balanced distribution centered in the mid-myocardial regions, indicative
of a normative myocardial workload and structural distribution. For individuals
with a overweight, the concentration shifts to the upper outer myocardial re-
gions, potentially corresponding to increased myocardial workload and altered
hemodynamic stress patterns associated with excess adiposity, consistent with
previously reported associations between obesity and regional myocardial dys-
function.

For sex-related regions, the female group exhibits more variation in the high-
lighted regions compared to the male group. This heterogeneity contrasts with
the male group’s consistent regional emphasis, suggesting uniform myocardial
adaptation. In contrast, the greater variability observed in females may reflect
differences in chamber sizes, wall thickness, or hemodynamic responses. Overall,
IBi-GNN’s model interpretation provided a comprehensive understanding of the
intricate interplay between physiological factors and cardiac structures.
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5 Conclusion

In this study, we propose a novel explainable integrative model, IBi-GNN, for
ejection fraction estimation. IBi-GNN integrates echocardiograms and demo-
graphic features and learns their interactions using the bipartite graph neural
network layers, which improve the predictive performance as well as the model
interpretability. The optimized edges of the bipartite graph neural network layers
can infer demography-specific echocardiogramic features for personalized diag-
nosis. Our study sheds light on compelling evidence linking demography features
to echocardiogram patterns contributing to a comprehensive understanding of
the intricate interplay between physiological factors and cardiac structures. The
proposed model could be a useful personalized diagnosis tool for cardiovascular
disease and will help one to understand the biological basis of cardiac phenotype.
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