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Abstract. Vision-language models have proven to be of great benefit for
medical image analysis since they learn rich semantics from both images
and reports. Prior efforts have focused on better alignment of image and
text representations to enhance image understanding. However, though
explicit reference to a prior image is common in Chest X-Ray (CXR) re-
ports, aligning progression descriptions with the semantics differences in
image pairs remains under-explored. In this work, we propose two com-
ponents to address this issue. (1) A CXR report processing pipeline to ex-
tract temporal structure. It processes reports with a large language model
(LLM) to separate the description and comparison contexts, and extracts
fine-grained annotations from reports. (2) A contrastive captioner model
for CXR, namely CoCa-CXR, to learn how to both describe images and
their temporal progressions. CoCa-CXR incorporates a novel regional
cross-attention module to identify local differences between paired CXR
images. Extensive experiments show the superiority of CoCa-CXR on
both progression analysis and report generation compared to previous
methods. Notably, on MS-CXR-T progression classification, CoCa-CXR
obtains 65.0% average testing accuracy on five pulmonary conditions,
outperforming the previous state-of-the-art (SOTA) model BioViL-T by
4.8%. It also achieves a RadGraph F1 of 24.2% on MIMIC-CXR, which
is comparable to the Med-Gemini foundation model.

Keywords: Vision Language Models · Progression Prediction · Re-
port Generation.

1 Introduction

Recent advances in vision-language (VL) pre-training have significantly enhanced
the development of flexible and powerful models for chest X-ray (CXR) analysis.
Training on both images and reports allows models to capture rich semantics,
aligning medical concepts with image representations. However, CXR reports
frequently include comparisons between multiple examinations [13], a crucial
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Fig. 1: CoCa-CXR adds a regional cross-attention module to CoCa and is trained
with three stages. We utilize an LLM, Gemini, to parse MIMIC-CXR reports
and get image description and pair comparison. Chest ImaGenome scene graphs
provide us with the local comparison between CXR image pairs. To leverage
the locality of disease conditions, we apply cross-attention to emphasize the
correlation between neighboring tokens of two images.

aspect often overlooked by existing approaches [4, 11, 19, 21]. Most prior work
focuses on predicting findings from a single image without explicitly modeling
temporal progression, limiting their ability to understand disease evolution and
restricting their clinical applicability.

Recent literature [1,2,7,23,26] has begun to train VL models that can make
temporal predictions with multiple CXR images. The common practice is fusing
representations of images as the joint representation to generate reports. While
straightforward, it does not explicitly guide models to learn temporal differences.
The key challenges remain: (1) the lack of datasets with aligned image pairs and
comparative descriptions, and (2) the need for model architectures to effectively
capture subtle regional changes over time.

We propose a systematic framework (Fig. 1) to address the above problems.
For (1), we build a CXR report processing pipeline to curate a new dataset,
CXR-4, with four sub-datasets, detailed in Tab. 1. It uses a large language model
(LLM) [20] to separate reports into descriptions and comparisons, allowing the
model to learn them sequentially. In addition, we also leverage the comparison
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Table 1: Statistics of the sub-datasets used for training CoCa-CXR.
Sub-Dataset Stage Description Data Source #Samples

1. Clean image-
report pair

1&2&3 Image-report pairs without any image
pair comparison content.

MIMIC-CXR 224,487

2. Image pair &
filtered report

2&3 Image pair with corresponding report.
All reports must contain comparison info.

MIMIC-CXR 132,320

3. Image pair &
comparison info

2&3 Image pair with corresponding compari-
son sentences from the report.

MIMIC-CXR 259,562

4. Image pair &
abnormal organs

2&3 Image pair with abnormal organ’s condi-
tion, coordinates, and progression.

MIMIC-CXR &
Chest ImaGenome

758,344

and localization from scene graphs [25] which contain the description of the
abnormal organs, condition progressions, and the corresponding bounding boxes,
enabling the models to learn regional differences. For (2), to leverage the regional
comparison in the CXR-4 dataset, we propose regional cross-attention, inspired
by [6], but specifically designed for attention between current and prior images.
This module refines traditional cross-attention [22] by restricting each token in
an image to attend only to its surrounding tokens in the prior image. We choose
Contrastive Captioner (CoCa) [28] as our baseline model. It has a minimalist
architecture to perform VL contrastive and generative learning together, which
are essential for aligned representation and downstream multitasking.

In summary, our work presents three major contributions to temporal CXR
understanding. 1) We introduce the CXR-4 dataset. It provides not only the
alignment between CXR images and text descriptions, but also explicit compar-
ison. 2) We propose CoCa-CXR, which is a CoCa-based model that can generate
reports from image pairs, predicting condition progressions, and localizing ab-
normal organs. 3) Experiments on both progression prediction and report gen-
eration tasks show the superior performance of CoCa-CXR to previous SOTA
CXR temporal models.

2 CXR-4 Dataset

We introduce CXR-4, a new CXR dataset comprising four sub-datasets (Tab. 1),
built from MIMIC-CXR [10,12,13] images, reports, and Chest ImaGenome scene
graphs [24,25]. The dataset follows the official MIMIC-CXR split, excluding the
MS-CXR-T [2, 3] test set. We develop a report processing pipeline (Fig. 1) to
extract structured information. Below, we detail the sub-datasets.

1. Clean image-report pairs. To align VL representations, we pair MIMIC-
CXR images with their radiological reports. We retain only AP/PA view scans
and use Gemini to filter reports, keeping only view information, FINDINGS, and
IMPRESSION sections while removing comparative descriptions. Using this sub-
dataset, we can pretrain CoCa in the training stage 1 to align a CXR image with
its corresponding image description.

2. Image pairs & filtered reports. This subset contains samples with
explicit comparison. Each sample consists of an image, its most recent prior
image, and its FINDINGS and IMPRESSION sections as textual descriptions.
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We make sure each report in this sub-dataset contains both description of the
current image and the comparison between the current and prior images.

3. Image pairs & comparative descriptions. Building on subset 2, the
subset 3 only includes sentences explicitly describing progression, extracted via
Gemini. This subset can be regarded as a strong supervision for the model to
learn the correspondence between an image pair and its progression. To augment
the data, we reverse image pairs and modify text descriptions accordingly (e.g.,
“improved pneumonia" → “worsened pneumonia").

4. Image pair & abnormal organs. Using Chest ImaGenome, we ex-
tract structured comparative descriptions, providing localized abnormality pro-
gression. The format follows: "[condition] [progress] at [organ], coordinates for
current image is [xcur,1, xcur,2, ycur,1, ycur,2], coordinates for previous image is
[xprior,1, xprior,2, yprior,1, yprior,2]." This sub-dataset provides the model with re-
gional annotation as a finer-grained supervision. We also reverse image pairs and
adjust descriptions accordingly to augment the dataset.

3 CoCa-CXR

3.1 Contrastive Captioners for CXR Image Pair Understanding

CoCa [28] (top left in Fig. 1) encodes images and text into latent representations
using a Vision Transformer (ViT) [8] and a unimodal text encoder. A transformer
text decoder then cross-attends to image features to generate captions. The
model is trained with a multi-modal contrastive loss:

LCon = − 1

N

(
N∑
i=1

log
exp(x>

i yi/τ)∑N
j=1 exp(x

>
i yj/τ)

+

N∑
i=1

log
exp(y>i xi/τ)∑N
j=1 exp(y

>
i xj/τ)

)
where xi and yi are normalized image and text embeddings, N is the batch size,
and τ is a temperature parameter. CoCa also learns fine-grained representations
through its text decoder with an autoregressive captioning objective:

LCap = −
T∑

t=1

logPθ(yt|y<t, x).

The final training objective combines both losses:

LCoCa = LCon + λLCap.

To adapt CoCa for modeling CXR image pairs and their temporal differences,
we use its ViT encoder to extract embeddings for the current (zc) and prior (zp)
images, where z ∈ RN×d, with N as the sequence length and d as the feature
dimension. The regional cross-attention module (detailed in Sec. 3.3) processes
zc as the main input and zp as the cross-attention input, producing an output
embedding zo ∈ RN×d. We then concatenate these embeddings to form the final
visual token sequence:

zconcat = concat(zc, zp, zo) ∈ R3N×d.
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This modified architecture, CoCa-CXR, enables the model to capture both in-
dividual image semantics and temporal progression between CXR image pairs.

3.2 Three-Stage Training of CoCa-CXR

Training CoCa-CXR in a single stage proved challenging (see Sec. 4.2 ablation
study), so we adopt a three-stage training strategy (Fig. 1). The stage 1 training
is performed on sub-dataset 1, and the stage 2 and 3 use all the 4 sub-datasets.

Stage 1: CoCa pretraining. We first train CoCa on the clean image-report
pairs to establish a general alignment between language and visual patterns.

Stage 2: Regional attention pretraining. Next, we train the regional
cross-attention module using image pairs. This step is crucial because the module
is randomly initialized, unlike the pretrained backbone. Prior work [5,15] shows
that prioritizing less transferable parameters improves performance.

Stage 3: Supervised fine-tuning. Finally, we fine-tune the regional cross-
attention module and multi-modal text decoder using all four sub-datasets, re-
fining the models ability to capture temporal progression and generate reports.

3.3 Regional Cross-Attention Module

The regional cross-attention module is a Transformer block [22] that processes
embeddings from the current (zc) and prior (zp) CXR images. First, a self-
attention layer refines zc:

zc
′
= SelfAttention(zc) = softmax

(
QcK

T
c√

d

)
Vc,

where Qc = zcWQ, Kc = zcWK , and Vc = zcWV are the query, key, and value
projections, with learnable weights WQ,WK ,WV .

Next, a cross-attention layer with regional masking (Fig. 1, bottom right)
extracts localized differences between images. The query Q′

i = zc
′
W ′

Q from the
current image attends to a restricted set of key-value pairs from the prior image:

CrossAttentioni = softmax
(
Q′

iK
′T
region(i)√
d

)
V ′

region(i),

where K ′
region(i) = K ′�Mregion(i) and V ′

region(i) = V ′�Mregion(i) are masked key-
value pairs within a local window around Q′

i. The mask Mregion(i) selects relevant
regions in the prior image, where region(i) refers to a local square window
around position i in the image token grid. Although different abnormalities may
have overlapped regions, our model applies a consistent spatial restriction to
encourage localized comparison, regardless of the disease category.

The final output sequence zo ∈ RN×d is obtained by passing {CrossAttentioni}Ni=1

through a feed-forward network, followed by skip connections and normalization.
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Table 2: Comparison on MS-CXR-T temporal image classification dataset (re-
peated for 4 random seeds). We report the macro-accuracy (%) across the three
progression classes (worsened, unchanged, improved) for each condition following
BioViL-T. BioViL-T does not explicitly discuss its validation set. For a complete
comparison, we report both MS-CXR-T validation and testing performance.
Method Consolidation Pleural

effusion Pneumonia Pneumothorax Edema Avg

CNN + Transformer [2] 44.0 ± 2.0 61.3 ± 1.6 45.1 ± 3.5 31.5 ± 3.1 65.5 ± 1.1 49.5
CheXRelNet [14] 47 47 47 36 49 45.2
BioViL [4] 56.0 ± 1.5 63.0 ± 0.9 60.2 ± 0.7 42.5 ± 2.7 67.5 ± 0.9 57.8
BioViL-T [2] 61.1 ± 2.4 67.0 ± 0.8 61.9 ± 1.9 42.6 ± 1.6 68.5 ± 0.8 60.2
Med-ST [26] 60.6 ± 1.2 67.4 ± 0.3 58.5 ± 1.5 65.0 ± 0.3 54.2 ± 0.8 61.1

CoCa-CXR (val.) 70.4 ± 0.5 69.6 ± 1.7 61.4 ± 1.6 72.8 ± 1.1 71.8 ± 0.3 69.2
CoCa-CXR (test) 69.6 ± 2.5 68.1 ± 1.5 56.4 ± 0.8 59.3 ± 2.6 71.8 ± 0.8 65.0

4 Experiments & Results

4.1 Experimental Setting

For all training stages, CXR images are padded to square, resized to 768× 768
pixels, and normalized to [0,1] without additional augmentations. The CoCa im-
age encoder extracts 482 = 2304 visual tokens per image, which are processed
by the regional cross-attention module using an 112 masking window. The re-
sulting sequence is downsampled via 2D average pooling to 162 = 256 tokens
before entering the multi-modal text decoder. We train with AdamW, using a
learning rate of 2 × 10−5 for stages 1 and 3, and 10−4 for stage 2. The model
is optimized with a batch size of N = 64 for 20k, 10k, and 30k iterations in
each stage, respectively. The sub-dataset ratio for the last two stages is set to
0.2 : 0.25 : 0.25 : 0.3.

4.2 Evalutation of CoCa-CXR

Results on Temporal Classification. On the MS-CXR-T dataset [2], CoCa-
CXR predicts condition progression between two images using the prompt "[con-
dition] is ", selecting the most probable next token from {"worsened", "un-
changed", "improved"}. As shown in Tab. 2, CoCa-CXR outperforms previous
SOTA models on both validation and test sets. It surpasses BioVil-T in four out
of five conditions, achieving an average test accuracy of 65.0%, which is 4.8%
higher than BioVil-T.

Results on Report Generation. Tab. 3 presents report generation results
on the MIMIC-CXR dataset [13]. CoCa-CXR predicts both FINDINGS and IM-
PRESSION sections, a more challenging task than FINDINGS alone [2]. When
generating only descriptions, it achieves a RadGraph F1 score of 24.2%, on par
with large-scale models like Med-Gemini [27]. Notably, PaliGemma-2 [18] incor-
porates both images and the indication section as inputs, whereas CoCa-CXR
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Table 3: CXR report generation on the MIMIC-CXR dataset with metrics (%)
sourced from published research. We show both CoCa-CXR results with descrip-
tion only and description + comparison.

Method Section RadGraph F1 BLEU4 Rouge-L
CXR-RePaiR [9] Findings 9.1 2.1 14.3
M2 Transformer [16] Findings 22.0 11.4 -
Med-PaLM M, 12B [21] Findings 25.2 10.4 26.2
CvT-21DistillGPT2 [17] Findings + Impression 15.4 12.4 28.5
Flamingo-CXR [19] Findings + Impression 20.5 10.1 29.7
Med-Gemini-2D [27] Findings + Impression 24.4 20.5 28.3
CoCa-CXR (des. only) Findings + Impression 24.2 18.6 27.8
CoCa-CXR (des. + comp.) Findings + Impression 23.7 18.7 27.5

Table 4: Ablation study on dataset construction, attention module, and the
model training scheme. We report testing accuracy (%) on MS-CXR-T dataset.

Ablation Con. Pl. Eff. Pneumon. Pneumoth. Edema Avg

CoCa-CXR 69.6 68.1 56.4 59.3 71.8 65.0

D
at

as
et

w/o Cleaning single image description 64.8 70.0 58.5 56.4 68.4 63.6
w/o Filtering comparing pairs 65.2 71.2 54.9 57.9 70.9 64.0
w/o Comparison-only description 59.8 65.3 60.6 47.7 69.9 60.7
w/o Abnormal organs & coordinates 54.2 69.1 59.9 53.2 65.9 60.5

M
od

el

w/o Regional cross-attention 58.8 70.5 58.8 47.2 69.6 61.0
w/o Contrastive learning 57.4 68.5 49.8 45.0 70.7 58.3
w/o Stage 2 pretraining 61.3 69.1 55.8 52.4 67.9 61.3
w/o Stage 1 and 2 pretraining 58.5 65.5 58.9 46.2 62.9 58.4

and other models in Tab. 3 rely solely on images; hence, we exclude its result
for fair comparison. When also generating comparison descriptions, CoCa-CXR
attains a RadGraph F1 score of 23.7%. Although this is slightly lower than
description-only generation, our hypothesis is that, describing progression adds
another dimension to report generation tasks, and with the current accuracy-
level (65%) on temporal classification, one can obtain a similar level of benefit
on Radgraph F1 by simply omitting comparisons in the generated reports. But
still, as shown in Fig. 2, this is step forward in incorporating this progression
dimension and towards real world application.

Ablation Study. To assess the impact of CoCa-CXRs components, we per-
form ablation studies on dataset construction and model training (Tab. 4). For
temporal classification, we find that the comparison-only descriptions in sub-
dataset 3 and the abnormal organ annotations with coordinates in sub-dataset 4
are crucial. The proposed regional cross-attention module improves average accu-
racy from 61.0% to 65.0%, demonstrating its effectiveness in capturing temporal
differences. Additionally, contrastive loss enhances representation learning for
identifying image variations. Finally, both stage 1 and stage 2 pretraininginitial-
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Image 1 Image 2

(Image 2 as prior) Findings: The et tube tip is approximately 6 cm above the carina. The right internal jugular line 
tip is at the level of superior svc. Heart size and mediastinum are stable. There is interval progression of 
pulmonary edema. Bilateral pleural effusions are noted, unchanged.

Ground Truth

Prediction

(Image 2 as prior) Findings: Support and monitoring devices are unchanged in position, and cardiomediastinal
contours are similar. Interval worsening of pulmonary edema as well as slight increase in size of moderate 
bilateral pleural effusions. Otherwise, no relevant short interval change.

(Image 1 as prior) Findings: The et tube tip is approximately 6 cm above the carina. The ng tube tip is in the 
stomach. The right internal jugular line tip is at the level of superior svc. Heart size and mediastinum are 
unchanged. There is interval improvement of pulmonary edema. There is interval improvement of the left 
pleural effusion.

Fig. 2: Report generation of CoCa-CXR on MIMIC-CXR validation set. If we
swap the order of the image pair, the comparison prediction changes accordingly.

Prediction: Pleural effusion is unchanged at left lung, object coordinates for prior 
image are [0.47, 0.74, 0.12, 0.58], for current image are [0.5, 0.81, 0.28, 0.83].

Current Image Prior Image

Prediction: pneumonia is improved at right lower lung zone, object coordinates for 
prior image are [0.17, 0.43, 0.5, 0.71], for current image are [0.16, 0.4, 0.5, 0.7].

Current Image Prior Image

Fig. 3: Visualization of the text-based condition progression detection.

izing encoders and the regional cross-attention moduleare essential, highlighting
the importance of our three-stage training strategy.

Visualization. We visualize the learned capability of CoCa-CXR through
its generated report and abnormality detection. The Fig. 2 shows that the gen-
erated report can correctly describe the image content and the change from
prior to current image. After swapping the order of two images, the prediction
also reverse. In Fig. 3, CoCa-CXR predicts the condition, progression, and the
coordinates in two images demonstrating the model’s capability of localizing ab-
normal organs. Specifically, the Intersection over Union (IoU) for Left lower lung
is 0.589 on the validation set for sub-dataset 4. A full performance breakdown
on 10 pulmonary structures is provided in the supplementary material. These
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results highlight the role of vision-language alignment pretraining and regional
cross-attention in capturing localized CXR patterns.

5 Conclusion

This work demonstrates how leveraging an LLM to curate condensed tempo-
ral information (CXR-4) enhances the training of a temporally aware model,
CoCa-CXR. We introduce a regional cross-attention module to improve longi-
tudinal CXR analysis by guiding attention across time. CoCa-CXR surpasses
previous SOTA in temporal classification by incorporating explicit comparison
supervision and regional attention within a three-stage training framework. It
accurately predicts disease progression and generates reports with RadGraph F1
scores comparable to leading models.
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