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Abstract. Fatty liver disease (FLD) negatively affects over 30% of the global 
population and can ultimately lead to cirrhosis and death. Early detection and 
intervention on the severity of FLD help control its progression. However, facil-
ities for assessing the severity of FLD are lacking in economically disadvantaged 
regions, highlighting an urgent need for a cost-effective and scalable screening 
method. Traditional Chinese Medicine (TCM) suggests a strong correlation be-
tween tongue characteristics and liver health, positioning tongue diagnosis as a 
non-invasive means for assessing FLD severity. Establishing an automated 
tongue diagnosis method holds promise for large-scale and rapid classification of 
FLD severity among rural populations. In this paper we present a Hard sample 
Mining-based Tongue Diagnosis Framework (HM-TDF) for multi-class classifi-
cation of FLD severity. The HM-TDF identifies hard samples using a novel un-
certainty estimation approach and addresses them through a multi-expert classi-
fier. We introduce a Multi-source Feature Fusion Kolmogorov-Arnold Network 
(MFF-KAN) to model the relationship between tongue images plus basic physi-
ological indicators and FLD severity. We propose a three-step training strategy 
to train this heterogeneous model. We construct and release a novel tongue diag-
nosis dataset for FLD severity classification, named Tongue-FLD, to advance 
research in automated tongue diagnosis. Experimental results on this dataset in-
dicate that the proposed method surpasses existing automated tongue diagnosis 
methods in the classification of FLD severity. Moreover, MFF-KAN effectively 
visualizes the key pathways from input to output, providing strong 
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interpretability. The dataset and code are available at 
https://github.com/MLDMXM2017/HM-TDF. 

Keywords: Hard mining, Kolmogorov-Arnold network (KAN), tongue diagno-
sis, net-work interpretability. 

1 Introduction 

Fatty liver disease (FLD) is one of the most common liver disorders worldwide [1]. 
FLD can be categorized into alcoholic and non-alcoholic types [2]. Both types have the 
potential to progress to steatohepatitis and hepatic fibrosis [3]. Early detection and in-
tervention on the severity of FLD help control its progression. Therefore, there is an 
urgent need to develop an inexpensive, convenient and scalable approach for assessing 
the severity of FLD, especially in medically underserved populations. 

Tongue diagnosis is an essential method in Traditional Chinese Medicine (TCM), 
which itself plays a significant role in Chinese healthcare [4]. The superficial capillaries 
in the tongue provide non-invasive access to internal body information in a straightfor-
ward manner [5]. Both TCM classical texts and contemporary medical research have 
highlighted a significant correlation between liver health status and tongue characteris-
tics [6, 7]. Based on observed characteristics, TCM practitioners derive diagnostic and 
treatment decisions using their expertise and knowledge. However, for assessing the 
severity of FLD, TCM lacks a standardized tongue diagnosis system to guide inexperi-
enced practitioners, which hinders its widespread application. Therefore, studies have 
attempted to model the relationship between tongue images and specific diseases to 
facilitate automated tongue diagnosis [5]. These studies have demonstrated the feasi-
bility of automated tongue diagnosis for diseases such as FLD [8-11] and liver cancer 
[6]. However, the majority of existing studies focus on binary classification to diagnose 
the presence or absence of diseases. This may be attributed to the complex and diverse 
nature of the tongue characteristics, leading to hard samples. The challenges are even 
severer if only a limited number of training samples are available. Additionally, many 
neural network-based tongue diagnosis models contain a vast number of learnable 
weights, enhancing the difficulty of model interpretation. 

To address the above challenges, we advance both methodological and data aspects. 
Our contributions can be summarized as: (1) We propose a Hard sample Mining-based 
Tongue Diagnosis Framework (HM-TDF) for multi-class classification of FLD sever-
ity, which identifies hard samples based on uncertainty and applies targeted classifier; 
(2) We design a Multi-source Feature Fusion Kolmogorov-Arnold Network (MFF-
KAN) for modeling the relationships between complex inputs and FLD severity; (3) 
We construct and release a novel dataset (Tongue-FLD), which is the largest publicly 
available tongue diagnosis dataset for FLD severity classification. (4) We interpret the 
network behavior based on visualization of key pathways within the network. 
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2 Related work 

Kolmogorov-Arnold Network (KAN) is a network derived from the Kolmogorov-Ar-
nold Representation Theorem (KART), which states that any continuous multivariate 
function can be represented as a finite sum and composition of univariate functions: 

 𝑓𝑓(𝒙𝒙) = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ∑  2𝑛𝑛
𝑞𝑞=0 𝜓𝜓𝑞𝑞 �∑  𝑛𝑛

𝑝𝑝=1 𝜙𝜙𝑝𝑝,𝑞𝑞�𝑥𝑥𝑝𝑝��, (1) 

where 𝑓𝑓: [0,1]𝑛𝑛 → ℝ, 𝜙𝜙𝑝𝑝,𝑞𝑞: [0,1] → ℝ, and 𝜓𝜓𝑞𝑞:ℝ → ℝ. Based on this theorem, Liu et 
al. [12] proposed KAN by replacing each linear weight matrix in an MLP with a learn-
able activation function matrix 𝚽𝚽𝑙𝑙 = �𝜙𝜙𝑙𝑙,𝑝𝑝,𝑞𝑞� . Here, 𝜙𝜙𝑙𝑙,𝑝𝑝,𝑞𝑞  represents the activation 
function corresponding to the 𝑝𝑝-th input and 𝑞𝑞-th output in 𝑙𝑙-th layer. Due to its struc-
tural similarity to MLP, KAN is also referred to as KAN Linear. 

The architecture design based on KART endows KAN with inherently strong repre-
sentation capabilities. In recent studies, the concept of learnable activation functions 
has been utilized to enhance convolutional and transformer architectures, leading to the 
development of KAN Conv [13] and Kolmogorov-Arnold Transformer [14]. The new 
models achieve comparable or even superior performance with significantly fewer pa-
rameters, highlighting the substantial potential of KAN-based architectures. 

3 Method 

3.1 Overview 

 
Fig. 1. Overview of the method. (a) The process of acquisition and segmentation of tongue im-
ages. (b) The Hard sample Mining-based Tongue Diagnosis Framework (HM-TDF). 

To enable automated tongue diagnosis for assessing FLD severity, we first collect facial 
images with protruded tongues under standard lighting conditions. These images were 
then segmented to obtain black-background images containing only the tongue, as 
shown in Fig. 1(a). The main challenge is to fully extract the diverse features from the 
surface of the tongue. At the same time, there are hard samples that are of little features 
to distinguish between different types. To this end, we propose a Hard sample Mining-
based Tongue Diagnosis Framework, termed HM-TDF. As shown in Fig. 1(b), the 
framework takes segmented standard tongue images 𝒙𝒙I  and basic physiological 



4  K. Liu et al. (lkhqz@xmu.edu.cn) 

indicators 𝒙𝒙P as inputs. The inputs are processed by the Multi-source Feature Fusion 
Kolmogorov-Arnold Network (MFF-KAN), whose KAN architecture is well-suited for 
modeling complex feature associations. For each sample, the MFF-KAN produces two 
prediction outputs, generated respectively by the feature fusion classifier (FFC) and the 
multi-expert classifier (MEC). When the uncertainty of the FFC is low, the current input 
is considered a general sample, and y�FFC  is selected as final prediction. Otherwise, 
y�MEC is used as the final prediction for a hard sample. The detailed network architecture 
and training process are introduced in the next subsection. 

3.2 Network architecture 

The detailed architecture of MFF-KAN is illustrated in Fig. 2(a). To effectively extract 
feature information from tongue images, we design the image encoder (IE) to incorpo-
rate both traditional convolutions (CNN) and KAN Conv. The role of the CNN is to 
generate feature maps with significantly compressed spatial dimensions, while retain-
ing as much of the original image information as possible. Then, KAN Conv leverage 
their powerful capacity for capturing complex relationships to extract feature vector 𝒇𝒇I 
from the feature maps. The indicator encoder (DE) is a KAN and performs extensive 
functional mapping of the fundamental physiological indicators to obtain the indicator 
feature vector 𝒇𝒇D. The concatenated fusion feature vector is subsequently used by the 
classifiers. The FFC and MEC are both KANs with a progressively shrinking architec-
ture. The output of FFC has a dimensionality equal to the number of classes 𝑛𝑛L. In 
contrast, MEC essentially consists of multiple binary classifiers, each acting as an ex-
pert specialized in recognizing specific class group. Therefore, MEC arranges its output 
based on the number of experts 𝑛𝑛E. 

 
Fig. 2. Illustration of MFF-KAN. (a) Architecture of MFF-KAN. (b) Three-step training strategy. 

A key aspect of the MEC its training with ordinal multi-expert labels (OMELs), which 
effectively diversify the grouping of different severity classes. From the perspective of 
an ordinal classification, class groups should not overlap. The grouping method that 
satisfies the aforementioned requirements is limited to 𝑛𝑛L − 1 possible combinations. 
To increase the diversity of groupings, we mask a variable set of classes to derive ad-
ditional grouping configurations. Ultimately, the grouping information for all classes is 
consolidated into the ordinal multi-expert matrix 𝑴𝑴𝑂𝑂 ∈ ℤ𝑛𝑛E×𝑛𝑛L, where each column 
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represents a FLD severity level, and each row represents the grouping target. Specifi-
cally, each row in 𝑴𝑴𝑂𝑂 contains at least one 1 and one -1, which are treated as positive 
and negative classification targets, respectively. The value 0 indicates that the class is 
ignored by the expert. After training with OMELs, the experts within MEC only need 
to focus on their respective binary classification tasks, thereby improving training effi-
ciency. Meanwhile, the integration of multi-expert decisions contributes to enhancing 
the robustness of our model. During testing, MEC selects the class corresponding to the 
column in 𝑴𝑴𝑂𝑂 with the minimum distance to the output vector 𝒛𝒛MEC. 

3.3 Training strategy 

MFF-KAN comprises multiple networks with varying architectures, making simulta-
neous training unlikely to achieve good convergence. Therefore, we designed a three-
step training strategy, as shown in Fig. 2(b). 

Step 1 aims to pre-train the CNN within the IE. We first connect the IE to a rotation 
regressor (RR), forming a new network for rotation detection training. After completing 
the rotation detection training, we deploy the CNN component to develop a robust di-
mensionality reduction capability, and froze its parameters in subsequent training steps. 

Step 2 aims to train the IE, DE and FFC for FLD severity classification. We treat the 
raw output of FFC as the prior probability predictions, and propose a moment of inertia 
(MOI) loss for this ordinal classification, formulated as follows: 

 ℒMOI = � �𝑐𝑐𝑦𝑦 − 𝑘𝑘�2𝑝𝑝𝑘𝑘 
𝐾𝐾

𝑘𝑘=0
, (2) 

Here 𝑐𝑐𝑦𝑦 represents the rotational center of the label, which can be defined as the class 
index. 𝑝𝑝𝑘𝑘 denotes the probability of the 𝑘𝑘-th class. The MOI loss is designed to con-
centrate the output probability towards the labeled target. By simultaneously optimizing 
both MIO loss and cross entropy loss, the network can flexibly adapt to classification 
problems with varying degrees of ordinal relationships. After this training step, the en-
coders are able to effectively extract disease-related features but are still inadequate in 
handling hard samples. To address this, we select hard samples according to the MIO 
uncertainty, where the 𝑐𝑐𝑦𝑦 in ℒMOI is replaced by rotational center of the probability. 
Samples with uncertainty exceeding a given threshold (50% of MOI uncertainty under 
the assumption that 𝑝𝑝𝑘𝑘 follows a uniform distribution) are selected as hard samples. 

At step 3, MEC learns the mapping from features in hard samples to FLD severity 
using OMELs. During this train step, the parameters of the encoders are kept fixed and 
a progressively-balanced sampling method is employed to mitigate class imbalance. 

4 Experiments 

4.1 Data description 

The data used in this study were obtained from a cohort study approved by the Ethics 
Review Committee of Fujian Medical University (Approval Nos. [2017-07] and [2020-
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58]). The participants were residents of Fuqing City, Fujian Province, China, aged 35 
to 75 years. For each participant, a facial image with the tongue extended was captured 
and basic physiological indicators were measured. Subsequently, participants under-
went ultrasound examinations, and FLD severity was assessed by radiologists [15]. 
Following experiments are conducted based on this newly released dataset, named 
Tongue-FLD. The dataset includes 5,717 samples: 3,690 with non-FLD, 1,512 with 
mild FLD, and 515 with moderate/severe FLD, resulting in an imbalance ratio of 
7.17/2.94/1.00. 

4.2 Comparison experiments 

Comparison setting. All methods were evaluated using the same input modalities, in-
cluding both tongue images and physiological indicators. Under this setting, we com-
pared our proposed method with 11 competing algorithms, including: a) five tongue 
diagnosis algorithms: (M1) Wang et al. [16], (M2) Dai et al. [11], (M3) Li et al. [17] , 
(M4) Qiu et al. [18], and (M5) Yuan et al. [19]; b) three state-of-the-art image classifi-
cation models: (M6) Vision Transformer (ViT) [20], (M7) ConvNeXt [21], and (M8) 
Vision Mamba (Vim) [22]. c) three widely-used classifiers: (M9) Support Vector Ma-
chine (SVM), (M10) Deep Forest (DF), and (M11) XGBT. We performed five-fold 
cross-validation and calculated the mean values for each evaluation metric, including 
Accuracy, and Macro-averaged Precision, Recall, and F1-score [23]. Considering the 
ordinal nature of FLD severity classification, Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE) [23] are also included. 

Table 1. Comparison of tongue diagnosis methods in FLD severity classification. 

Method Encoder Classifier Accuracy Precision Recall F1-score MAE ↓ RMSE ↓ Rank ↓ 

M1 [16] ResNet34 MLP 0.7260(9) 0.5812(11) 0.5632(8) 0.5670(10) 0.3097(10) 0.6167(10) 9.7 
M2 [11] GAN XGBT 0.7305(6) 0.6215(3) 0.5567(10) 0.5738(7) 0.2919(5) 0.5801(3) 6.2 
M3 [17] ResNet50 GA_XGBT 0.7498(2) 0.6123(6) 0.5583(9) 0.5711(8) 0.2758(2) 0.5716(2) 5.2 
M4 [18] MobileNet MLP 0.7270(8) 0.5941(7) 0.6006(4) 0.5906(4) 0.3024(8) 0.6006(7) 4.7 
M5 [19] TransFG MLP 0.6490(12) 0.5426(12) 0.6114(1) 0.5498(12) 0.4045(12) 0.7152(12) 10.5 
M6[20] ViT MLP 0.7172(10) 0.5919(8) 0.5876(6) 0.5877(5) 0.3088(9) 0.6008(8) 7.5 
M7 [21] ConvNeXt MLP 0.7463(3) 0.6133(5) 0.6111(2) 0.6047(2) 0.2843(3) 0.5879(5) 2.7 
M8 [22] Mamba MLP 0.7305(6) 0.5903(9) 0.5990(5) 0.5932(3) 0.3018(7) 0.6055(9) 6.8 
M9 IE+DE SVM 0.7305(6) 0.6326(2) 0.5535(11) 0.5700(9) 0.2957(6) 0.5901(6) 7.2 
M10 IE+DE DF 0.7020(11) 0.5887(10) 0.5533(12) 0.5614(11) 0.3330(11) 0.6346(11) 11.0 
M11 IE+DE XGBT 0.7361(4) 0.6195(4) 0.5646(7) 0.5815(6) 0.2899(4) 0.5847(4) 5.3 
HM-TDF IE+DE FFC+MEC 0.7524(1) 0.6570(1) 0.6070(3) 0.6237(1) 0.2694(1) 0.5596(1) 1.3 

Comparison results. The results are presented using rank order derived from the Fried-
man test [24], where a lower average rank signifies a superior overall performance. In 
Table 1, detailed results are presented, with numbers in parentheses indicating the rank 
order of algorithms for that metric. Our proposed method, with an average rank of 1.3, 



 HM-TDF 7 

is the lowest among all compared methods. In comparison, ConvNeXt and the method 
proposed by Qiu et al. [18] achieve average ranks of 2.7 and 4.7, respectively, placing 
second and third in average performance. Directly feeding the extracted features into a 
single classifier is not an effective approach, as even the best-performing XGBT only 
achieved an average rank of 5.3. Thirdly, our proposed method achieves the best per-
formance on the MAE and RMSE metrics. This indicates that severe misclassifications 
between moderate/severe cases and non-FLD cases are reduced. Consequently, our 
method demonstrates superior performance in classifying the FLD severity. 

Table 2. The ablation study results for the innovations in the proposed method 

4.3 Ablation experiments 

Table 2 provides a detailed overview of the ablation study results. A commonly em-
ployed MLP classifier with cross-entropy loss is presented as the baseline. Through 
comparison of results under different experimental settings, we found that: 1) The FFC 
classifier demonstrates superior performance compared to the MLP classifier, with a 
notable decrease in RMSE by approximately 3%; 2) the replacement of the cross-en-
tropy loss function with FFC leads to improvements across all metrics; 3) pre-training 
on the rotation regression task facilitates better parameter initialization, benefiting all 
performance metrics except Accuracy; 4) MEC aids in better handling of hard samples, 
resulting in improvements across all metrics. 

4.4 Interpretability 

The proposed MFF-KAN exhibits strong interpretability. We enhance the understand-
ing of the model's diagnostic process through key pathway selection and visualization 
in the trained MFF-KAN. Specifically, starting from the final output layer of FFC, we 
consider all the classes as key output nodes. Then, we select key input nodes with the 
most significant influence on the key output nodes based on their significance scores. 
The significance score of the 𝑖𝑖-th input node in 𝑙𝑙-th layer is computed as follows: 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙,𝑖𝑖 = 1
𝑛𝑛key

∑ �𝜙𝜙𝑙𝑙,𝑖𝑖,𝑗𝑗�1𝑗𝑗 . (3) 

Here 𝑛𝑛key is the number of key output nodes. 𝑗𝑗 refers to the index of the key output 
nodes rather than all nodes. �𝜙𝜙𝑙𝑙,𝑖𝑖,𝑗𝑗�1represents the average magnitude of the activation 
function on the corresponding edge. These key input nodes are then set as the key output 

Classifier Loss RR-Pretrain Accuracy Precision Recall F1-score MAE ↓ RMSE ↓ 
MLP Cross-entropy - 0.7162 0.5789 0.5872 0.5808 0.3181 0.6216 
FFC Cross-entropy - 0.7209 0.5864 0.5854 0.5855 0.3024 0.5908 
FFC ℒFFC - 0.7262 0.6285 0.5968 0.5892 0.2843 0.5749 
FFC ℒFFC  0.7233 0.6298 0.6037 0.6060 0.2716 0.5738 

FFC, MEC ℒFFC, ℒMEC  0.7524 0.6570 0.6070 0.6237 0.2694 0.5596 
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nodes for the preceding layer, and the process is iterated until reaching the image fea-
ture vector 𝒇𝒇I or physiological indicators. Through this process, we achieve selection 
of the key pathways from input to output in MFF-KAN, as shown in Fig. 3. 

For each key input node in the image feature vector, we aim to identify which tongue 
characteristics are associated with it. By examining the representative tongue images in 
each node group, we observed consistent characteristics. For instance, most images in 
the group for node 210 tend to show a white tongue coating, while those in the group 
for node 275 often display a purple tongue. These tongue characteristics are highly 
correlated with the values of the key nodes, indicating that they are crucial features for 
our FLD severity tongue diagnosis task. 

 
Fig. 3. Visualization of input-output relationships in MFF-KAN. For each layer, the top 5 key 
nodes are selected to visualize based on their importance scores. Two key pathways are high-
lighted to demonstrate how waist circumference and white tongue coating influence the output. 
For each level of FLD severity, tongue images with the highest output probability are shown. 

Using the visualized key pathways, we can easily understand how each input affects 
the final outputs. Specifically, we first select an input node of interest and follow its 
primary propagation pathway (represented by opaque lines), recording the correlation 
of activation functions along the way. For instance, in the red-highlighted pathway in 
Fig. 3, the "Waist" input value undergoes two positive and two negative correlations, 
eventually contributing to the "Moderate/Severe" output. This implies that a larger 
waist circumference positively influences the prediction for Moderate/Severe FLD. 
Meanwhile, in the yellow-highlighted pathway, a similar analytical process indicates 
that the "white coating" characteristic contributes to the "No" output. Hence, the rela-
tive relationship between inputs and outputs can be interpreted and cross-referenced 
against medical domain knowledge. 
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We further present samples with the highest output logits for each category at the 
top of Fig. 3, providing a more intuitive understanding of which tongue images are 
considered representative for each FLD severity level. It is evident that in terms of 
tongue color, non-FLD cases appear redder, while FLD patients tend to exhibit a more 
purplish hue. Additionally, non-FLD samples predominantly show a white tongue coat-
ing, while some mild samples exhibit a greasy, thick coating (annotated as Nos. 10, 11, 
and 14 in the figure). Furthermore, tooth marks are more frequently observed in patients 
with moderate to severe FLD (Nos. 20, 22, and 23). Overall, a red tongue and white 
coating are indicative of lower FLD risk, whereas a purplish tongue and greasy coating 
are risk factors. Additionally, tooth marks are associated with greater disease severity. 

5 Conclusion 

In this paper we presented a Hard sample Mining-based Tongue Diagnosis Framework 
(HM-TDF) for multi-class classification of FLD severity. We introduced a Multi-
source Feature Fusion Kolmogorov-Arnold Network (MFF-KAN) along with an effec-
tive training strategy. We released a novel tongue diagnosis dataset (Tongue-FLD) for 
FLD severity classification. Experimental results showed that the proposed method out-
performs existing tongue diagnosis approaches. Furthermore, MFF-KAN offers a clear 
interpretation by visualizing key pathways within the network. 

Acknowledgments. This study was funded by National Key R&D Program of China (No. 
2023YFC2604400), National Natural Science Foundation of China (No. 82304086), Natural Sci-
ence Foundation of Fujian Province (Nos. 2022J01707 and 2023J01630), Fujian Science and 
Technology Plan Industry-University-Research Cooperation Project of China (No. 2021H6015), 
Public Technology Service Platform Project of Xiamen City of China (No. 3502Z20231043), 
Government Funding of Fuqing City (No. 2019B003), High-level Talents Research Start-up Pro-
ject of Fujian Medical University (Nos. XRCZX2020034, XRCZX2021025, XRCZX2022018). 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 
the content of this article. 

References 

1. Le, M.H., et al.: Global incidence of non-alcoholic fatty liver disease: A systematic review 
and meta-analysis of 63 studies and 1,201,807 persons. Journal of Hepatology 79, 287–295 
(2023) 

2. Han, S.K., Baik, S.K., Kim, M.Y.: Non-alcoholic fatty liver disease: Definition and 
subtypes. Clinical and Molecular Hepatology 29, S5–S16 (2023) 

3. Tarantino, G., Citro, V.: What are the common downstream molecular events between 
alcoholic and nonalcoholic fatty liver? Lipids in Health and Disease 23, (2024) 

4. Solos, I., Liang, Y.: A historical evaluation of Chinese tongue diagnosis in the treatment of 
septicemic plague in the pre-antibiotic era, and as a new direction for revolutionary clinical 
research applications. Journal of Integrative Medicine 16, 141–146 (2018) 



10  K. Liu et al. (lkhqz@xmu.edu.cn) 

5. Liu, Q., et al.: A survey of artificial intelligence in tongue image for disease diagnosis and 
syndrome differentiation. Digital Health 9, (2023) 

6. Zhang, Y., et al.: Relationship between thick or greasy tongue-coating microbiota and 
tongue diagnosis in patients with primary liver cancer. Frontiers in Microbiology 13, (2022) 

7. Zhao, C.-Q., Zhou, Y., Ping, J., Xu, L.-M.: Traditional Chinese medicine for treatment of 
liver diseases: progress, challenges and opportunities. Journal of Integrative Medicine 12, 
401–408 (2014) 

8. Jiang, T., et al.: Application of computer tongue image analysis technology in the diagnosis 
of NAFLD. Computers in Biology and Medicine 135, (2021) 

9. Wang, R.-R., et al.: Noninvasive Diagnostic Technique for Nonalcoholic Fatty Liver 
Disease Based on Features of Tongue Images. Chinese Journal of Integrative Medicine 30, 
203–212 (2024) 

10. Zhang, Q., Wen, J., Zhou, J., Zhang, B.: Missing-view completion for fatty liver disease 
detection. Computers in Biology and Medicine 150, (2022) 

11. Dai, S., et al.: Application of intelligent tongue image analysis in Conjunction with 
microbiomes in the diagnosis of MAFLD. Heliyon 10, (2024) 

12. Liu, Z., et al.: Kan: Kolmogorov-arnold networks. arXiv:2404.19756. arXiv preprint (2024) 
13. Bodner, A.D., Tepsich, A.S., Spolski, J.N., Pourteau, S.: Convolutional Kolmogorov-Arnold 

Networks. arXiv:2406.13155. arXiv preprint (2024) 
14. Yang, X., Wang, X.: Kolmogorov-Arnold Transformer. arXiv:2409.10594. arXiv preprint 

(2024) 
15. Fan, J., et al.: Guidelines for the diagnosis and management of nonalcoholic fatty liver 

disease: update 2010. Journal of Digestive Diseases 12, 38–44 (2011) 
16. Wang, X., et al.: Constructing tongue coating recognition model using deep transfer learning 

to assist syndrome diagnosis and its potential in noninvasive ethnopharmacological 
evaluation. Journal of Ethnopharmacology 285, (2022) 

17. Li, J., et al.: A tongue features fusion approach to predicting prediabetes and diabetes with 
machine learning. Journal of Biomedical Informatics 115, (2021) 

18. Qiu, D., et al.: A novel tongue feature extraction method on mobile devices. Biomedical 
Signal Processing and Control 80, (2023) 

19. Yuan, L., et al.: Development of a tongue image-based machine learning tool for the 
diagnosis of gastric cancer: a prospective multicentre clinical cohort study. 
EClinicalMedicine 57, (2023) 

20. Dosovitskiy, A., et al.: An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale. arXiv:2010.11929. arXiv preprint (2020) 

21. Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. 
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11966–11976. 
(2022) 

22. Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision Mamba: Efficient Visual 
Representation Learning with Bidirectional State Space Model. arXiv:2401.09417. arXiv 
preprint (2024) 

23. Yilmaz, A.E., Demirhan, H.: Weighted kappa measures for ordinal multi-class classification 
performance. Applied Soft Computing 134, (2023) 

24. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine 
Learning Research 7, 1–30 (2006) 


	1 Introduction
	2 Related work
	3 Method
	3.1 Overview
	3.2 Network architecture
	3.3 Training strategy

	4 Experiments
	4.1 Data description
	4.2 Comparison experiments
	Comparison setting. All methods were evaluated using the same input modalities, including both tongue images and physiological indicators. Under this setting, we compared our proposed method with 11 competing algorithms, including: a) five tongue diag...
	Comparison results. The results are presented using rank order derived from the Friedman test [24], where a lower average rank signifies a superior overall performance. In Table 1, detailed results are presented, with numbers in parentheses indicating...

	4.3 Ablation experiments
	4.4 Interpretability

	5 Conclusion
	References

