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Abstract. The clinical diagnosis of Attention Deficit Hyperactivity Dis-
order (ADHD) primarily relies on scale questionnaires, clinical inter-
views, and executive function tests, which face challenges including lim-
ited medical resources, low diagnostic efficiency, and high dependence
on clinicians’ subjective experience. Existing AI-assisted diagnostic ap-
proaches based on behavioral analysis lack sufficient result interpretabil-
ity, hindering their integration with conventional diagnostic workflows
and practical clinical application. This paper proposes EDWAR, an Ex-
plainable ADHD Diagnostic Framework Using Weakly-Supervised Ac-
tion Recognition, which establishes a collaborative diagnostic mechanism
integrating behavioral analysis with traditional test records. By employ-
ing weakly-supervised action recognition methodology requiring only di-
agnostic labels and video-level annotations of abnormal behaviors, our
framework not only achieves high diagnostic accuracy but also provides
transparent interpretation through both video-level and timestep-wise
anomaly action recognition. Experimental results demonstrate that ED-
WAR attains superior diagnostic performance while offering convincing
and explainable evidence.

Keywords: ADHD Diagnosis · Weakly-Supervised Learning · Action
Recognition · Explainable AI · Clinical Decision Support.

1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD), a prevalent neurodevelop-
mental disorder [22, 25], manifests core symptoms including persistent hyperac-
tivity, impulse dysregulation, and attentional deficits [15]. Current clinical diag-
nosis relies on composite evaluations combining standardized rating scales, be-
havioral observations, and executive function assessments [9, 13]. However, three
critical limitations persist: (1) clinician-dependent subjectivity in behavioral in-
terpretation leads to diagnostic inconsistency; (2) the absence of quantitative
metrics for core hyperactive symptoms impedes objective verification; (3) dis-
jointed analysis between qualitative observations and quantitative test results
compounds diagnostic uncertainty.
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The integration of artificial intelligence (AI) in ADHD assessment has yielded
promising developments[20, 29]. Pioneering studies employed machine learning
classifiers on structured diagnostic records[5, 23], followed by multimodal ap-
proaches incorporating neurophysiological data (EEG/MRI) and wearable sensor
metrics[1, 4, 14]. Recent computer vision advancements enable video-based be-
havioral phenotyping through automated analysis of gaze patterns, facial micro-
expressions, and kinematic features [16, 21, 28]. While these vision-driven meth-
ods align well with conventional diagnostic protocols, a fundamental constraint
remains unresolved: the opaque decision-making processes in prevailing black-
box models hinder clinical trustworthiness.

To address this issue, we propose EDWAR, an Explainable ADHD Diagnostic
framework using Weakly-Supervised Action Recognition. The framework im-
plements two key processes: First, it analyzes subjects’ pose sequences captured
during executive function tests through a weakly-supervised action recognition
module, which detects activity segment proposals and quantifies activation in-
tensities of anomaly actions [26]. Second, it synthesizes anomaly action scores
with executive function test metrics to generate diagnostic conclusions. This
multimodal integration enables EDWAR to not only achieve accurate ADHD di-
agnosis but also provide temporal-localized evidence to support its conclusions.
Experimental results demonstrate EDWAR’s dual capability: attaining state-
of-the-art diagnostic accuracy (94.3%) while producing clinically interpretable
explanations through precise anomaly action localization.

The framework advances AI-assisted ADHD diagnostics by: (1) establishing
a novel paradigm that integrates executive function test metrics with explain-
able anomaly action recognition; (2) overcoming fine-grained anomaly action
annotation bottlenecks through weakly-supervised learning adapted for clinical
constraints; (3) experimentally validating the synchronization of diagnostic effi-
cacy and explainability.

2 Method

As shown in Fig. 1, the EDWAR framework first requires subjects to complete
standardized executive function tests. Behavioral recordings are synchronously
captured via cameras during testing and converted into skeletal sequences, which
serve as inputs for a two-stage collaborative reasoning framework. The weakly-
supervised action recognition module extracts timestep-wise anomaly activations
and video-wise anomaly scores from skeletal sequences, while the ADHD diag-
nosis module integrates these scores with executive function test metrics for di-
agnostic prediction. Below, we first detail the data collection and preprocessing
pipeline, followed by the framework architecture and optimization strategy.

2.1 Data Collection and Preprocess

Executive Function Test Design. Three standardized neuropsychological
tests were implemented: (1) Stroop Test [2] to evaluate attention control and
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Fig. 1. The illustration of EDWAR framework.

cognitive flexibility; (2) Wisconsin Card Sorting Test (WCST) [19] to assess
cognitive flexibility and problem-solving; (3) Facial Emotion Recognition [6] to
measure emotional processing capacity. These tasks systematically probe distinct
cognitive domains while eliciting ADHD-characteristic behavioral manifestations
during focused task engagement. A certified assistant monitored the testing ses-
sion in real-time to ensure protocol adherence and data acquisition reliability.

Pose Extraction. During executive function tests, participant behaviors were
recorded via software-synchronized cameras to ensure temporal alignment be-
tween video segments and testing procedures. Videos were downsampled to 1
frame per second, from which 2D skeletal keypoint sequences were extracted
using a pre-trained ST-GCN++ model [27]. Spatial normalization was applied
to mitigate anthropometric and positional biases: joint coordinates were scaled
based on limb-length ratios and aligned to a hip-centered coordinate system.
The resulting skeletal sequences served for anomaly action recognition.

Training Data Annotation. We constructed video-level multi-instance anomaly
action annotation for training the weakly-supervised action recognition module.
Through a systematic review of the knowledge of ADHD-related motor dysfunc-
tion and clinical video analysis, we defined 6 common pathological hyperactive
actions associated with ADHD: frequently changing posture, wiggling body, shak-
ing legs or feet, constantly shifting in the seat, looking around, and touching the
head. Automated annotation was performed using the Qwen2.5-VL-7B-Instruct
large vision-language model (LVLM) [24]: video clips were input into this LVLM,
and predefined anomaly actions were detected through multi-round question an-
swering to generate training labels. Finally, a clinical expert team manually
reviewed and refined the labels to ensure annotation accuracy.
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2.2 Explainable ADHD Diagnosis Framework

Weakly-supervised Action Recognition The weakly-supervised action recog-
nition module aims to perform feature encoding on human pose sequences while
achieving anomaly action recognition and localization. Given a skeletal sequence
X ∈ RT×D extracted from action videos, where T denotes the number of
timesteps and D represents the feature dimension, the module addresses inter-
ference from irrelevant motions (e.g., static poses or non-ADHD-related move-
ments) during testing. Inspired by [10], we introduce an Activity Segment Pro-
posal (ASP) module to locate temporally active segments. The ASP module first
extracts pose features using an encoder gθ:

f = gθ(X) (1)

where f ∈ RT×d denotes the encoded pose feature sequence. These features are
then projected into a T × 2 activation map:

αact = Proj(f), αact ∈ RT×2 (2)

where αact
i,0 and αact

i,1 represent the activation for the presence/absence of activities
at the i-th timestep, respectively.

Intuitively, one could directly normalize each ai using softmax to convert
activation scores into probability distributions. However, this approach dispro-
portionately emphasizes strongly activated segments while neglecting marginally
activated timesteps, resulting in fragmented and incomplete activity proposals.
To address this, we employ Gumbel-Softmax [12] to inject controlled stochasticity
during sampling, generating complementary activity/no-activity proposals:

[PAct
i ,PNoAct

i ] = Gumbel-Softmax([ai,0, ai,1]), ∀i ∈ {1, . . . , T} (3)

Crucially, Gumbel-Softmax enables differentiable gradients through soft sam-
pling during training while switching to hard sampling for deterministic infer-
ence:

PAct
i = argmax([ai,0, ai,1]), ∀i ∈ {1, . . . , T} (4)

Using PAct, we filter out timesteps containing static poses or normal mo-
tions from the pose feature sequence, enabling precise anomaly action analysis.
We then introduce an Anomaly Activation Network (AAN) composed of multi-
layer perceptrons (MLPs) to predict timestep-wise anomaly activations from the
masked features:

αano = AAN(PAct ⊙ f) (5)

where αano ∈ RT×C denotes the anomaly activation matrix, and C represents the
number of anomaly action categories. Each element αano

i,c indicates the activation
logit for anomaly action c at timestep i, providing interpretable evidence about
whether anomaly c occurs at temporal segment i.

On this basis, we compute video-level anomaly scores s ∈ RC by aggregating
temporal anomaly activations across activity proposals. The scoring function is
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defined as:

sc = σ

(∑T
i=1 P

Act
i · αano

i,c

Tc

)
, c = 1, . . . , C (6)

where σ(·) denotes the sigmoid activation function, Tc is a learnable temperature
parameter for class c. sc ∈ [0, 1] represents the predicted probability of anomaly
class c occurring in the video, which enables the identification of present anoma-
lies within the video segment through thresholding.

ADHD Diagnosis To enhance diagnostic accuracy, we integrate the anomaly
score vector s ∈ RC with standardized executive function test metrics r ∈ RM

through a lightweight multilayer perceptron (MLP) classifier. The ADHD diag-
nosis probability is formulated as:

p = MLP (concat(s, r)) (7)

Optimization We employ an end-to-end multi-task learning framework to
jointly optimize action recognition and diagnostic tasks. The composite loss func-
tion combines two binary cross-entropy (BCE) components:

L = Ldiag + λLaction (8)

where:
Ldiag = BCE(p, ydiag)

Laction =

C∑
c=1

BCE(sc, yactionc )
(9)

λ is the task weighting hyperparameter, ydiag is the Ground-truth diagnosis
label, and yactionc is the binary indicator for presence of anomaly action c.

The joint training of diagnosis and action recognition facilitates mutual
knowledge transfer: the weakly-supervised module detects disease-specific anoma-
lies to supply diagnostic evidence, while diagnostic gradients guide the action
network to focus on clinically salient patterns. This synergy enhances feature
discriminability and interpretability while reducing overfitting via shared fea-
ture extraction. Experiments show this synergy improves accuracy and provides
clinicians with interpretable decisions supported by anomaly-action correlations
and clinical metrics.

3 Experiments

3.1 Dataset

We collected test records from 441 subjects in real-world clinical settings, com-
prising 324 ADHD children and 117 typically developing controls. Participants
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Table 1. Comparison of ADHD diagnosis performance between different methods. T
and A represent using executive function test and action information, respectively.

Method Type Accuracy Recall Precision F1-score
SVM [3] T 0.684 0.504 0.508 0.506
Decision Tree [5] T 0.722 0.643 0.646 0.645
Random Forest [23] T 0.692 0.518 0.535 0.526
Logistic Regression [23] T 0.714 0.568 0.606 0.586
MLP [8] T 0.741 0.922 0.766 0.837
bi-LSTM [28] A 0.849 0.929 0.868 0.897
Bert [28] A 0.853 0.910 0.887 0.898
ADR [17] A 0.805 0.894 0.840 0.866
ADR-T [17] T+A 0.797 0.904 0.825 0.863
AVEN [21] A 0.867 0.917 0.899 0.908
AVEN-T [21] T+A 0.871 0.925 0.898 0.911
Bert* [28] T+A 0.916 0.905 0.885 0.895
EDWAR (Ours) T+A 0.943 0.950 0.915 0.932

aged 6–12 years with a male-to-female ratio of 3:1 completed assessments last-
ing 19.5± 4.5 minutes. The videos were segmented into 1-minute clips, yielding
8,608 valid clips (ADHD: 6,514, control: 2,094). All clips were preprocessed as
described in Section 2.1 to generate normalized skeletal sequences and anomaly
action annotations.

To ensure rigorous evaluation, we implemented 5-fold stratified cross-validation,
preserving original class distribution ratios in each fold through stratified ran-
dom sampling.

3.2 Implementation Details

The experiments were conducted on an NVIDIA A100 80GB PCIe GPU. Input
skeleton sequences were padded to 60 frames using the COCO skeleton format
(17 keypoints with 2D coordinates) [18]. The Adam optimizer was employed
with a learning rate of 1e-4, and Binary Cross-Entropy (BCE) loss was used for
training. Evaluation metrics included accuracy, recall, precision, and F1-score
for both diagnosis and action detection results.

3.3 Results

ADHD Diagnosis. To systematically validate the clinical efficacy of the ED-
WAR framework, we conducted comparative analyses with state-of-the-art AI-
assisted diagnostic methods that integrate clinical test metrics and hyperactivity
behavior analysis. This includes approaches employing traditional machine learn-
ing models (SVM, Decision Tree, Random Forest, Logistic Regression, and MLP)
for clinical metric evaluation [3, 5, 23], as well as temporal pattern recognition
methods using bi-LSTM and BERT architectures to capture sequential behav-
ioral characteristics in patient actions [7, 11, 28]. Additionally, we included two
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Table 2. Ablation study results of EDWAR framework components.

AR mode WSAR TM LAction Accuracy Recall Precision F1-score

Co-Learning

0.921 0.905 0.897 0.901
✓ 0.916 0.905 0.885 0.895

✓ 0.918 0.916 0.889 0.902
✓ ✓ 0.941 0.931 0.916 0.923

✓ 0.938 0.933 0.920 0.926
✓ ✓ 0.943 0.926 0.923 0.924
✓ ✓ 0.925 0.909 0.905 0.907
✓ ✓ ✓ 0.943 0.950 0.915 0.932

Pre-trained AR

✓ 0.767 0.500 0.383 0.434
✓ ✓ 0.406 0.580 0.665 0.620

✓ ✓ 0.767 0.500 0.383 0.434
✓ ✓ ✓ 0.842 0.684 0.849 0.758

further comparative baselines: ADR group uses skeleton extraction and abnor-
mal motion detection techniques from video data, similar to our approach[17];
AVEN group refers to a recent study that presents an effective ADHD diagnostic
method with promising results[21]. Furthermore, we developed a BERT-based
hybrid-modal baseline that synergistically combines sequential action recognition
models with MLP-based clinical metric processing, establishing an integrated
framework for cross-modal diagnostic validation.

The results demonstrate that the multimodal integration of test metrics and
action methods yields significantly better performance than single-modality ap-
proaches. Notably, EDWAR outperforms the mixed-modality baseline BERT*
across all metrics, confirming that its improvement stems from enhanced ADHD-
specific action pattern recognition and mutual knowledge transfer between modal-
ities rather than mere information augmentation. Moreover, the results of addi-
tional comparative experiments, including the ADR and AVEN methods, consis-
tently demonstrate lower performance compared to EDWAR, further validating
the superior efficacy of our model.

Ablation Study. As illustrated in Table 2, we conducted ablation studies to
evaluate the contributions of three key components in the EDWAR framework:
the Weakly-Supervised Action Recognition module, execution functional test
metrics, and the Anomaly Action Recognition Loss LAction. Specifically, for the
WSAR module, we replaced it with a baseline BERT model lacking components
of Activity Segment Proposal (ASP) and Anomaly Activity Network (AAN); For
test metrics (TM ), we directly used raw predicted action scores for diagnostic
prediction; For LAction, we retained only the diagnostic loss LDiag during train-
ing. Additionally, we investigated whether using pre-trained action recognition
models (rather than collaborative learning) could achieve effective ADHD diag-
nosis, comparing it against our joint action recognition and diagnostic prediction
framework (Co-Learning vs Pre-trained).
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Fig. 2. Explainability Illustration example of constantly shifting in the seat action.

The experimental results reveal three critical insights: First, the proposed
weakly-supervised action recognition framework consistently enhances diagnos-
tic performance. This demonstrates that leveraging ASP and AAN for timestep-
wise activation learning effectively mitigates interference from non-activity in-
tervals and cross-category anomalies, thereby improving ADHD diagnosis accu-
racy. Second, while neither test metrics nor action recognition constraints alone
improved performance, their combined integration significantly boosted model
effectiveness. Notably, directly applying pre-trained anomaly action detection
models yielded poor diagnostic results. This starkly highlights the necessity of
our collaborative learning framework. When trained in isolation, action recogni-
tion models may overfit to ADHD-irrelevant action activities, failing to capture
disorder-specific activation patterns critical for diagnosis.

3.4 Explainability

As demonstrated in Fig. 2, we illustrate how EDWAR leverages weakly-supervised
action detection results to provide interpretable evidence supporting diagnostic
conclusions. The upper panel displays a video segment of a child diagnosed with
ADHD during executive function testing, capturing their postural dynamics.
The lower panel visualizes EDWAR’s timestamp-wise activation predictions for
the "constantly shifting in the seat" anomaly action category. The background-
highlighted segments indicate periods of anomalous behaviors, with color-coded
markers aligned to corresponding video frames.

Notably, the elevated anomaly activation scores between 8–39s are closely
matched clinician-annotated intervals of abnormal movements. High-activation
phases correlate with predefined anomaly criteria (e.g., frequent seat shifting),
while low-activation periods reflect normative behaviors.

In clinical practice, EDWAR enhances diagnostic transparency by deliver-
ing timestamp-wise activation maps and aggregated anomaly scores, enabling
clinicians to trace evidence directly to specific behavioral episodes. This capabil-
ity reduces manual review time by rapidly localizing high-probability anomalies
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and standardizes interpretation by aligning automated predictions with expert
judgments.

4 Conclusion

This study proposes EDWAR, an explainable diagnostic framework for ADHD
that innovatively integrates weakly-supervised action recognition with clinical
test analysis through collaborative learning. The framework demonstrates supe-
rior diagnostic accuracy (94.3%) while providing multi-granularity clinical evi-
dence from video-level anomaly scoring to temporally localized action activations
effectively bridging the gap between algorithmic decisions and clinical reasoning.

Future research will extend this paradigm to other neurodevelopmental dis-
orders (e.g., ASD or depression) through multimodal expansion incorporating
eye-tracking and facial expression analysis, as well as cross-disorder knowledge
transfer mechanisms for generalized behavioral understanding. These develop-
ments aim to establish a new standard for transparent, evidence-based AI diag-
nostics in developmental psychiatry.
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