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Abstract. Analyzing operating room (OR) workflows to derive quanti-
tative insights into OR efficiency is important for hospitals to maximize
patient care and financial sustainability. Prior work on OR-level work-
flow analysis has relied on end-to-end deep neural networks. While these
approaches work well in constrained settings, they are limited to the
conditions specified at development time and do not offer the flexibility
necessary to accommodate the OR workflow analysis needs of various OR
scenarios (e.g., large academic center vs. rural provider) without data col-
lection, annotation, and retraining. Reasoning segmentation (RS) based
on foundation models offers this flexibility by enabling automated analy-
sis of OR workflows from OR video feeds given only an implicit text query
related to the objects of interest. Due to the reliance on large language
model (LLM) fine-tuning, current RS approaches struggle with reasoning
about semantic/spatial relationships and show limited generalization to
OR video due to variations in visual characteristics and domain-specific
terminology. To address these limitations, we first propose a novel digital
twin (DT) representation that preserves both semantic and spatial re-
lationships between the various OR components. Then, building on this
foundation, we propose ORDiRS (Operating Room Digital twin represen-
tation for Reasoning Segmentation), an LLM-tuning-free RS framework
that reformulates RS into a “reason-retrieval-synthesize” paradigm. Fi-
nally, we present ORDiRS-Agent, an LLM-based agent that decomposes
OR workflow analysis queries into manageable RS sub-queries and gener-
ates responses by combining detailed textual explanations with support-
ing visual evidence from RS. Experimental results on both an in-house
and a public OR dataset demonstrate that our ORDiRS achieves a cIoU
improvement of 6.12%-9.74% compared to the existing state-of-the-arts.

Keywords: Operation Room Efficiency · Reasoning Segmentation · Dig-
ital Twin Representation · Large Language Model (LLM).

1 Introduction

Operating room (OR) efficiency is important for optimizing surgical through-
put, resource utilization, and patient safety, with direct implications for hospi-
tal financial sustainability [2]. Video analysis provides objective monitoring of
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OR workflow patterns and resource utilization, generating data-driven insights
that may enable operational improvements [9]. However, traditional deep learn-
ing methods for OR video analysis are limited to narrowly defined closed-set
tasks, which are typically formulated in an end-to-end manner [8]. These previ-
ous methods can identify surgical instruments or track staff movements, but their
closed-set nature 1) limits their flexibility inhibiting their utility for the various
clinical settings these algorithms may be used in, and 2) results in them fail-
ing to interpret open-set text queries that require reasoning. To overcome these
limitations, reasoning segmentation (RS) [5] was introduced. Unlike traditional
segmentation methods, RS processes text queries that only implicitly refer to the
required segmentation targets, thus requiring both spatial and semantic under-
standing [5, 18, 14, 17]. Thus, RS may enable automated OR efficiency analysis
by identifying workflow bottlenecks, monitoring safety protocol compliance, and
evaluating team coordination during procedural steps [12, 3]

However, current RS approaches, including LISA [5, 20], VISA [18], Reason3D
[1], rely heavily on fine-tuning multimodal large language models (MLLMs) for
both perception and reasoning. These models struggle with implicit text queries
that require multi-step reasoning across semantic and spatial relationships due to
inherent limitations in MLLM token representations, which arbitrarily discretize
continuous physical information in the OR. This limitation further hinders OR
efficiency analysis, which depends on processing complex sequences of entity in-
teractions while maintaining spatial awareness. Moreover, these RS models strug-
gle with domain adaptation in OR settings, as they are typically developed and
fine-tuned on general-purpose datasets like ReasonSeg [5], which differ from med-
ical environments in both visual characteristics and domain-specific terminology
[13]. Even with OR-specific fine-tuning, generalization remains challenging due to
data distribution variability across hospitals and healthcare institutions. Finally,
reliance on MLLM fine-tuning requires frequent updates to maintain compatibil-
ity with evolving backbones, potentially disrupting continuous monitoring and
increasing implementation costs in OR environments [16].

To overcome these limitations, we introduce a digital twin (DT) represen-
tation that models the OR environment from video. Our DT representation
integrates specialized vision models, such as SAM for identifying and segment-
ing objects in the OR [4, 10] and DepthAnything2 for estimating spatial depth
[19], to capture and encode semantic and spatial relationships among person-
nel, equipment, and activities. We then propose a tuning-free RS approach that
restructures RS into a “reason-retrieve-synthesize” paradigm, enabling adaptive
segmentation without fine-tuning. The large language model (LLM) performs
zero-shot reasoning on the DT representation in three steps: (1) interpreting the
implicit text query, (2) analyzing relevant objects and their spatial and seman-
tic relationships, and (3) generating segmentation masks. For example, when
tasked with segmenting non-essential personnel entering sterile fields, the LLM
first interprets the query requirements, then identifies relevant staff members by
analyzing semantic relationships in the DT representation, evaluates their spatial
positions relative to sterile zones, and generates segmentation masks accordingly.
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In contrast to prior approaches to RS that leverage MLLMs to process query
and video directly, our approach separates perception from reasoning, allowing
the LLM to focus on high-level analysis using structured information from the
DT representation.

The major contributions are three-fold. First, we propose a novel DT repre-
sentation for OR video that captures and preserves semantic and spatial relation-
ships. Second, we introduce a tuning-free RS approach for OR data, called Oper-
ating Room Digital twin representation for Reasoning Segmentation (ORDiRS),
which leverages the DT representation as an intermediate layer to separate per-
ception from reasoning in the LLM. Third, building on ORDiRS, we propose
ORDiRS-Agent, an agent framework designed specifically for OR efficiency
analysis. It first breaks down user queries into manageable RS sub-queries for
ORDiRS to process. It then aggregates the RS results to generate multi-modal
responses, combining textual explanations with corresponding RS masks to en-
hance transparency.

2 Methods

OR Digital Twin Representation Construction Our DT representation
creates a representation of the OR environment by integrating outputs from
multiple specialized vision foundation models to preserve both semantic rela-
tionships between OR components and their spatial configurations, as shown
in Fig. 1. We process the OR video sequence I = [I(1), I(2), · · · , I(T )] frame by
frame, where each frame I(t) at time t is encoded into a structured JSON J (t).
We select JSON as our DT representation format due to its hierarchical structure
that naturally accommodates nested relationships between frame-level metadata
and instance-level attributes while maintaining compatibility with LLMs and en-
abling efficient querying of spatial-temporal information.

The DT representation construction process begins with OWLv2 [7], an open
vocabulary detection model that generates a set of bounding boxes B(t) =

{b(t)i }Ni=1 for each frame I(t), where each b
(t)
i = [x

(t)
i,min, y

(t)
i,min, x

(t)
i,max, y

(t)
i,max]

represents the spatial coordinates of a detected object with a confidence score
α
(t)
i ∈ [0, 1]. Using each bounding box b

(t)
i as a prompt, we employ the SAM2 [10]

to generate precise instance segmentation masks M (t) = {m(t)
i }Ni=1, where m

(t)
i

is a binary mask indicating pixel-wise object boundaries with confidence score
β
(t)
i derived from the IoU prediction head in SAM. For semantic understanding,

we use LLaVA-7B to analyze image regions cropped from B(t) [6]. LLaVA-7B

generates semantic descriptors S(t) = s
(t)
i

N

i=1, where each s
(t)
i contains natural

language descriptions that capture object attributes, roles, and contextual re-
lationships within the OR environment. Analogously, spatial relationships are
encoded through depth information using DepthAnything2 [19], which gener-
ates a dense depth map D(t) for each frame uniformly. For each instance i, we
compute depth statistics within its mask region as d

(t)
i = {D(t)(p)|p ∈ m

(t)
i },

where p represents pixel coordinates. The mean depth µ
(t)
i and standard devi-
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Fig. 1. Overview of the ORDiRS framework. The pipeline consists of two main com-
ponents. (1) DT representation construction: Processing raw OR video frames through
multiple vision foundation models, culminating in a structured JSON; (2) RS stage:
Implementing a three-stage “reason-retrieve-synthesize” paradigm where LLM-based
reasoning decomposes an implicit text query into atomic reasoning requirements.

ation σ
(t)
i are calculated from d

(t)
i to characterize the instance’s position and

depth variation. This depth information enables monitoring of spatial relation-
ships for maintaining proper distances between sterile and non-sterile zones in
the OR environment.

Reasoning Segmentation with DT Representation Given the J (t) and
an implicit text query Q, our RS approach (ORDiRS) follows a three-stage
paradigm: “reason-retrieve-synthesize” (Fig. 1). This design enables zero-shot
reasoning by leveraging LLMs’ inherent capabilities while maintaining inter-
pretability through structured intermediate outputs. The reasoning stage be-
gins by decomposing the implicit query Q into explicit reasoning requirements
R = {rk}Kk=1, where K represents the number of atomic requirements identified
by the LLM through chain-of-thought prompting. Each requirement rk speci-
fies the semantic or spatial conditions that the target instances must satisfy.
The retrieval stage processes these requirements against the DT representation
through a series of filtering operations. For each requirement rk, we define a
filtering function fk that evaluates instances based on their attributes in J (t):
C(t)
k = fk(J (t), rk), where C(t)

k represents the set of candidate instances satisfying
requirement rk at time t. To facilitate semantic filtering, fk leverages the LLM’s
natural language understanding capabilities by constructing prompts that evalu-
ate instance descriptions s(t)i against semantic requirements. For spatial filtering,
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Fig. 2. Visualization of the OR reasoning segmentation in-house benchmark dataset.
(a) Sample video frame sequence from case ID 22 demonstrating paired video frames,
segmentation masks, and corresponding spatial/semantic implicit text queries. (b)
Query type distribution per dataset split showing balanced representation. (c) Dataset
split proportions across train, validation, and test datasets. (d) Overall equal distribu-
tion between spatial and semantic queries.

fk prompts LLM to utilize the depth information and instance mask to assess
relative positions between instances by generating relative codes. The final can-
didate set C(t) is obtained through the intersection of all requirement-specific
candidates i.e., C(t) =

⋂K
k=1 C

(t)
k . The synthesis stage generates the final segmen-

tation by combining instance masks from the candidate set. For each frame t, we
construct the reasoning segmentation mask M

(t)
Q as M

(t)
Q =

⋃
i∈C(t) m

(t)
i , where

m
(t)
i represents the instance mask for candidate i.

Agent for OR Workflow Analysis Based on our RS method, we propose
ORDiRS-Agent to enable OR workflow analysis through natural language in-
teraction. Given a user query QOR about OR efficiency, ORDiRS-Agent first
decomposes it into a set of RS sub-queries {Q1, Q2, ..., QL} through LLM-based
planning. We implement the LLM-based planning process by a two-step chain-
of-thought prompting, where the LLM first analyzes QOR to identify key effi-
ciency aspects that require investigation, then generates targeted RS sub-queries
for each aspect. After LLM-based planning, we construct the DT represen-
tation {J (t)}Tt=1 across the entire OR video sequence and leverage ORDiRS
to process each sub-query Ql to generate corresponding RS masks {M (t)

Ql
}Tt=1.

Then, we define an efficiency analysis function El for each sub-query: Al =

El({M (t)
Ql

}Tt=1, {J (t)}Tt=1), where Al represents the analysis results containing
temporal patterns, statistical measures, and identified objects. The efficiency
analysis function El operates in two modes depending on the analysis require-
ments of Ql. For semantic analysis, such as evaluating team coordination pat-
terns or protocol compliance, El directly employs the LLM to reason over the
sequence of RS masks and DT representations. For quantitative analysis tasks,
such as computing door opening frequencies or phase transition durations, El
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Table 1. The comparison of RS across different reasoning categories (semantic, spatial,
mixed) on the in-house dataset. The values are reported as mean ± standard deviation.
The efficiency metric is the mean inference time per image in seconds. The upward
arrow (↑) signifies that higher values indicate better performance.

Methods cIoU (↑) gIoU (↑) Time(s)Semantic Spatial Mixed Semantic Spatial Mixed
LISA-7B-SAM1 [5] 25.17±6.34 59.93±5.07 39.85±5.34 34.94±7.96 63.77±4.40 48.97±4.89 1.51±0.16

LISA-13B-SAM1 [5] 28.15±4.36 65.35±5.66 42.08±3.87 34.19±4.68 68.85±4.77 50.75±4.19 2.03±0.21

LISA-7B-SAM1 (ft) [5] 69.68±3.35 69.00±5.53 68.30±3.03 64.62±3.59 65.38±5.50 64.56±3.06 1.52±0.11

LISA-13B-SAM1 (ft) [5] 53.32±6.57 64.84±5.92 59.38±5.09 54.33±6.13 65.25±5.86 58.19±5.79 1.85±0.10

LISA-7B-SAM2 (ft) [5] 51.14±5.00 51.42±4.13 52.81±3.87 43.84±5.94 46.99±4.16 47.05±3.91 1.42±0.13

LISA-13B-SAM2 (ft) [5] 49.06±5.87 49.45±3.69 51.21±4.48 39.22±6.09 42.00±4.23 42.69±4.71 2.09±0.19

V* [15] 3.09±1.44 3.35±1.25 3.26±1.00 2.93±1.48 3.27±1.26 3.15±1.06 22.62±0.39

Ours 75.80±3.58 78.74±3.19 77.25±2.34 76.85±3.23 82.48±2.49 79.55±1.97 89.05±2.51

utilizes the LLM to generate Python code that processes the mask sequences
and extracts relevant statistical metrics. Finally, ORDiRS-Agent aggregates all
analysis results through LLM to obtain the final response to QOR by R =
LLM({Al}Ll=1, QOR), where R represents the final response containing both tex-
tual explanations and supporting visual evidence in terms of the most relative
RS mask.

3 Experiments

Implementation Details For LLMs used in our method, we utilize the GPT-
4o. We leverage the cumulative intersection over the cumulative union (cIoU)
and the average of all per-image intersection-over-unions (gIoU) as the metrics
for RS [5]. We compare our method against LISA [5] (7B and 13B parameter
versions) including both the original and fine-tuned LISA (on our dataset) [5]
with their 7B and 13B parameter variants; and V* [15]. Each LISA variant was
evaluated using two different SAMs, i.e., SAM1 [4] and SAM2 [10].

Benchmark Dataset To evaluate RS performance on OR videos, we construct
a benchmark dataset from in-house OR video recordings, collected under IRB ap-
proval with appropriate consent from all participants. The dataset encompasses
recordings from four operating rooms (case IDs 22, 25, 26, and 28), specifically
focusing on OR workflows centering on patients, anesthesiologists, anesthesia
machines, and operating tables. Two experts manually annotated each frame
with ground truth segmentation masks and the corresponding video-level im-
plicit text query, as shown in Fig. 2(a). The annotation process incorporated
both spatial and semantic queries, where spatial queries address location-based
requirements and semantic queries focus on attribute-based or function-based
identification. The dataset comprises 142 frames in total, divided into training
(1 OR, 40 frames, 28.2%), validation (1 OR, 20 frames, 14.1%), and test sets (2
OR, 82 frames, 57.7%) on OR-level, as illustrated in Fig. 2(b,c). The training
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Case-22-141-human-2 IoU: 0.0346 IoU: 0.3670IoU: 0.4380Category: Semantic

Query: Segment the patient
wearing a light-colored drape.

IoU: 0.7796

Ground Truth OursLISA-13B-SAM1
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V*

IoU: 0.2565 IoU: 0.1218IoU: 0.4920Category: Spatial

Query: Segment the patient
lying on the operating table.

IoU: 0.9511IoU: 0.0000

LISA-13B-SAM1 (ft) LISA-13B-SAM2 (ft)

IoU: 0.0000

Fig. 3. Qualitative comparison of RS results. Two representative cases are shown: a
semantic RS task (top row) requiring identification of a patient with specific clothing
attributes, and a spatial RS task (bottom row) involving positional understanding.
White regions represent the segmentation masks, with ground truth shown in the left-
most column.

and validation sets are only used for the baseline methods i.e., LISA [5], and
we conduct comparisons of all methods on the test set. The query composition
maintains an equal balance between spatial and semantic types across all splits
(Fig. 2(d)), with each category representing 50% of the total queries. In addition
to the in-house OR dataset, we extended a publicly available MOVR dataset [11]
of 732 frames with the RS annotations and obtained MOVR-Reason, following
the same annotation workflow.

Reasoning Segmentation Performance Table 1 presents the comparison of
RS results and the computational efficiency. Our method demonstrates superior
performance across all reasoning categories. Specifically, ORDiRS attains the
highest cIoU scores of 75.80%, 78.74%, and 77.25% for semantic, spatial, and
mixed reasoning tasks respectively, surpassing the previous best results from
LISA-7B-SAM1 (ft) by margins of 6.12%, 9.74%, and 8.95%. Similar improve-
ments are observed in gIoU metrics, where our method achieves 76.85%, 82.48%,
and 79.55% across the three categories, representing substantial gains over exist-
ing approaches. However, it comes at the cost of increased computational over-
head, with our method requiring 89.05 seconds per image compared to 1.51-22.62
seconds for baseline methods. This suggests that our method, without additional
improvements to its real-time inference capabilities, is most suitable for offline
workflow analysis tasks. Similar results can be observed from the MOVR-Reason
dataset, in Table 2. Notably, while fine-tuned LISA variants (denoted by ’ft’)
show improved performance over their base counterparts, they still fall short of
our tuning-free approach, highlighting the effectiveness of our “reason-retrieval-
synthesize paradigm” in leveraging LLM’s inherent reasoning capabilities for OR
environment understanding, as shown in Fig. 3.

Case Study on Operating Room Efficiency Analysis We evaluated ORDiRS-
Agent through a case study analyzing surgical workflow efficiency in Fig. 4. Given
the query ‘‘Measure key surgical phases to uncover inefficiencies and streamline
transitions,” ORDiRS-Agent can detect important transition points. It demon-
strates ORDiRS-Agent’s capability to decompose complex efficiency queries into
manageable RS tasks, and provide comprehensive visual-temporal insights.
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Table 2. The comparison of RS across different reasoning categories (semantic, spatial,
mixed) on the MVOR-Reason dataset.

Methods cIoU (↑) gIoU (↑) Time(s)Semantic Spatial Mixed Semantic Spatial Mixed
LISA-7B-SAM1 [5] 32.45±3.20 24.18±6.70 28.12±3.20 27.51±3.04 22.45±2.15 24.24±1.08 1.72±0.22

LISA-13B-SAM1 [5] 34.25±6.20 40.45±2.13 38.20±1.99 32.20±3.87 30.05±3.43 31.22±2.98 1.93±0.54

LISA-7B-SAM1 (ft) [5] 45.34±2.15 49.45±4.56 46.67±5.14 50.20±4.74 47.30±3.40 49.49±5.14 1.77±0.41

LISA-13B-SAM1 (ft) [5] 52.45±3.54 48.99±2.38 51.74±1.45 56.84±3.16 55.39±2.15 55.96±3.45 1.98±0.28

LISA-7B-SAM2 (ft) [5] 56.38±7.21 58.20±3.98 57.56±4.45 50.45±3.24 56.18±3.06 53.49±1.81 1.98±0.22

LISA-13B-SAM2 (ft) [5] 59.47±2.12 61.31±2.54 60.26±3.88 59.32±2.11 53.22±2.58 58.90±3.68 2.39±0.42

V* [15] 41.22±3.56 44.52±3.52 43.30±4.98 39.54±3.45 45.76±5.81 41.20±4.12 25.30±2.41

Ours 83.21±2.81 86.11±3.76 84.35±3.40 82.54±2.54 80.19±3.22 81.54±4.50 58.21±7.31

User Query：Measure key surgical phases (positioning, 

incision, active procedure, closure) to uncover inefficiencies and 

streamline transitions.

Time

Staff Arrival

When do essential personnel 

(e.g., anesthesiologist, surgical 

team) first enter the OR to begin 

setup?

• Segment the medical personnel near the operating room door.

• Segment the patient positioned on the operating table.

• Segment the staff transferring the patient from the operating 

table to a stretcher. 

• Segment the medical personnel in the operating room.

Active Procedure to Closure

When does the team 

transition from the active 

procedure phase to closure 

tasks?

Step 1: Identify Key Efficiency Aspects

Staff Exit

At what point do essential 

personnel complete their tasks 

and exit the OR, marking the 

end of the procedure?

Stage 4: Result Analysis

Step 2: Generates Targeted Reasoning Segmentation Sub-queries

Step 3: Reasoning Segmentation with ORDiRS

Frame-13 Frame-17 Frame-21 Frame-29 Frame-41

Frame-69 Frame-233 Frame-273 Frame-301 Frame-325

• Frame 17 – Staff Arrival Detected: Our RS model detects a cluster of medical personnel near 

the OR door, confirming initial staff arrival.

• Frame 41 – Patient Positioned on OR Table: Our RS model identifies the patient positioned on 

the operating table, completing setup.

• Frame 273 – Transition to Transfer: Our RS model segments the patient being transferred onto 

a stretcher, marking the end of active procedure.

• Frame 325 – Closure Phase Initiated: Our RS model shows no personnel segmentation, 

indicating the closure phase has commenced.

Patient Transfer

At what point is the patient 

moved onto the OR table, 

signaling the start of the setup 

phase?

Input to ORDiRS-Agent

Fig. 4. A case study for the workflow of ORDiRS-Agent for analyzing operating room
efficiency. The process begins with a user query about surgical phase transitions, fol-
lowed by the identification of key efficiency aspects. It then generates targeted reason-
ing segmentation sub-queries (Step 2), performs reasoning segmentation using ORDiRS
(Step 3), and concludes with result analysis (Step 4). The visualization demonstrates
how ORDiRS-Agent tracks critical workflow events across frames, including staff ar-
rival (Frame 17), patient positioning (Frame 41), transition to transfer (Frame 273),
and closure phase initiation (Frame 325).

4 Conclusion

We present ORDiRS, an RS framework that utilizes DT representations to ana-
lyze OR videos. By separating perception from reasoning through the DT repre-
sentation, ORDiRS eliminates the need for fine-tuning while ensuring robust per-
formance across diverse OR environments. We also introduce ORDiRS-Agent, an
analytical framework designed to evaluate OR efficiency using ORDiRS. Our re-
sults demonstrate that structured intermediate representations effectively bridge
the gap between raw visual data (e.g., video) and high-level reasoning. Future
work could extend the DT representation framework to capture temporal depen-
dencies and long-term patterns in surgical workflows, enabling deeper efficiency
analyses. Moreover, the ‘reason-retrieve-synthesize’ paradigm could be adapted
for other healthcare settings requiring complex visual reasoning, such as emer-
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gency departments and intensive care units. Finally, accelerating the workflow
with more efficient foundation models is also one promising direction.
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