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Abstract. Spatial transcriptomics enables localized gene expression pro-
filing within histological regions. Current supervised methods struggle to
infer patterns for novel gene types beyond their training scope, while ex-
isting zero-shot frameworks partially address this by incorporating gene
semantics, the “independent learning” paradigms hamper their usage in
zero-shot gene expression prediction. Specifically, they learn tissue mor-
phology and gene semantics (inter-modality) independently, and treat
gene functions (intra-modality) as independent entities. In this paper, we
present a deep association multimodal framework which bridges patho-
logical image with gene functionality semantics for zero-shot expression
prediction. Concretely, our framework achieves generalized expression
prediction by integrating nuclei-aware spatial modeling that preserves
tissue microarchitecture, cross-modal alignment of pathological features
with gene functionality semantics via iterative vision-language prompt
learning, and gene interaction modeling that dynamically captures re-
lationships across gene descriptions. On standard benchmark datasets,
we demonstrate competitive zero-shot performance compared to other
competitors (e.g., outperforms 16.3% in mean Pearson Correlation Co-
efficient on ¢SCC dataset), and we show clinical interpretability of our
method. Codes is publicly available at https://github.com/DeepMed-
Lab-ECNU/ALIGN-ST.

Keywords: Spatial transcriptomics - Gene expression prediction - Com-
putational pathology - Zero-shot learning.

1 Introduction

Spatial transcriptomics (ST) has emerged as a transformative technology for
mapping gene expression within histological tissue regions [14], providing crit-
ical insights into disease progression and cellular microenvironments [18]. By
correlating localized gene activity with morphological patterns in tissue slides,
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ST enables biomarker discovery and mechanistic studies of pathological pro-
cesses [15,12,10]. However, widespread adoption of ST remains constrained by
the high cost and technical complexity of sequencing-based gene expression pro-
filing [2], creating a critical bottleneck for training robust deep learning models
to predict gene expression directly from pathological images.

Traditional supervised methods [3,6,13,9,16] have been employed to predict
gene expression from whole slide images. While these models have demonstrated
promising performance, they are fundamentally constrained by their training
data, as they can only predict gene types seen during training. For example,
when trained on the HER2+- dataset, these models are predominantly optimized
for highly expressed gene sequences, which restricts their ability to generalize to
unseen gene types. This limitation necessitates costly data collection and retrain-
ing for each new set of gene types, making supervised approaches impractical
for large-scale biomedical applications.

SGN [17] is the only existing zero-shot gene expression prediction framework,
pioneering the integration of functional semantics of genes derived from large lan-
guage models (LLMs) [7]. By generating textual descriptions of gene functions
and phenotypes, SGN establishes preliminary associations between pathological
patterns and molecular mechanisms, enabling prediction of unseen gene types
without prior expression data. While SGN represents a significant step forward,
its “independent learning” paradigm still hampers its usage in zero-shot gene
expression prediction. Independent learning paradigm includes: (1) tissue mor-
phology and gene semantics are learned independently, and (2) gene functions
are treated as independent entities. Thus, the gene type feature extractor is only
optimized for the training (seen) gene types, which are sensitive to class shift.
Besides, it lacks the ability in explicitly elevating the biological connections and
co-expression patterns among gene types, which are crucial for generalization.

To enhance its ability in predicting unseen gene types, we introduce a “deep
association learning” paradigm, including (1) dynamic mapping between tissue
morphology and gene semantics, which enables gene type features to be bet-
ter optimized to describe each tissue slide image (instead of being overfitting
to the training gene types), and (2) gene interaction modeling, which further
models gene-gene dependencies based on semantic relevance, enabling context-
aware embeddings. Furthermore, gene spatial expression is tied to the geomet-
ric information within histological images, including tissue structure and cell
distribution [4]. Thus, to extract more gene-related image features, we further
supplement image features with tissue-wide structure and fine-grained nuclei dis-
tributions. By integrating these components, our framework establishes a biolog-
ically meaningful, dynamically adaptive approach to zero-shot gene expression
prediction. Experimental results on benchmark datasets show that our method
outperforms SGN, while maintaining competitive performance with supervised
methods and extending prediction capabilities to previously unseen gene types.
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Fig. 1. Given a slide image containing N patches {Xi}ﬁil, our framework predicts gene
expression for both seen (C*) and unseen (C*) gene types. We have four stages: 1)Nuclei
Distribution Aware Image Feature Extractor fuses each patch’s global tissue semantics
and nuclei spatial distributions; 2)Pathology-Guided Genomic Prompter aligns LLM-
generated gene descriptions {T.} with image features through dual stream prompt
learning. 3)Adaptive Semantic Interaction Graph models gene dependencies via topk
semantic neighbor selection and weighted feature aggregation. 4)Gene Expression Pre-
diction refines patch features via GraphSAGE network and computes expression values
through dot products between enhanced features and gene embeddings.

2 Method

Given a WSI containing N patches {X;} Y ;, where X; € REXW>3 the goal is to
predict the gene expression values {y; .}, for all patches, where c € C*[JC" is
the gene type of interest (both seen type C* and unseen type C*). For each gene
type c, following SGN [17], we utilize a pre-trained LLM [7] to generate the de-
scription, using the last hidden state of the LLM as our description T, € RLXDT,
where L is the length of the description and DT is the feature dimension. As
shown in Fig. 1, our framework extracts nucleus-aware features by integrat-
ing tissue morphology with nuclei distributions. These features align with gene
descriptions {T.} via cross-modal prompt fusion, dynamically adapting descrip-
tions to pathological context. Subsequently, an adaptive semantic graph models
gene relationships via top-k semantic neighbor selection and weighted feature
aggregation. Gene expression prediction is derived from dot product between
image feature and gene embedding.

2.1 Nuclei Distribution Aware Image Feature Extractor

Previous gene expression prediction methods [6,9,13,16,17] rely solely on global
patch-level features, overlooking fine-grained cellular spatial information essen-
tial for modeling localized gene expression patterns. To address this limitation,
we propose Nuclei Distribution Aware Image Feature Extractor (NDA-IFE) to
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Fig. 2. Illustration of Pathology-Guided Genomic Prompter module.

integrate global context modeling and nuclei-aware localization. Given an image
patch X;, we extract global semantic features h¥ € R” ' using ResNet-18. Mean-
while, Hover-net [5] generates a segmentation mask S; € {0, 1}7*W followed
by a lightweight convolutional module to encode cellular spatial distributions:

h? :]'—COHV(Si)a hf € RDh ) (1)

where Feony () comprises five 3 x 3 convolutions with BatchNorm and ReLU.
A cross-attention layer with residual connection dynamically aligns global
tissue semantics (h% as query) with cellular architectures (h$ as key/value), while
preserving the original contextual information, thus effectively supplementing
image features with fine-grained nuclei distributions:
H, = Attention(Q =h8, K =h3, V =h%)+hé, H,eR” . (2

K3

2.2 Pathology-Guided Genomic Prompter

Previous works [17] computes gene expression through a static dot product be-
tween patch-level image features and gene type descriptions, neglecting associa-
tions between pathological patterns and gene functions. We propose Pathology-
Guided Genomic Prompter (PGGP) module (Fig. 2), a dual-stream architecture
that establishes deep associations via dynamic cross-modal alignment, iteratively
refining gene semantics via pathology-guided prompt interactions.
Dual-Stream Feature Encoding. For pathological image feature encoding,
given patch features {H;}Y ;, we enhance global contextual modeling through a
4-layer Image Transformer Encoder. The output feature of the I-th image encoder
is calculated as:

E(i;“)g = ImageTransformer (E(i;nfl)) 7E§§)g = [P‘(’(ijfual; 1, 3)
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where E(i;“)g € RINH+2)xD" ontains two learnable visual prompt tokens P‘(’;)S“al €

R2*D" for the I-th layer.

For genomic text encoding, gene type description T € R xD' are projected
to T € REXP" via a learnable linear layer. Then, a 4-layer Text Transformer
Encoder generates hierarchical semantic representations:

E?f)}‘t = TextTransformer(; (Efleftl)) ,E'ES;““ = [CLS(0)§ prext. ’i‘c] , (4)

where Eff € R(E-+3)%D% incorporates a learnable class token [CLS ), two text

prompts P‘(Clex'C € R2xD" and text features.
Cross-Modal Prompt Interaction. To enable cross-modal alignment between
histology features and gene semantics, as shown in Fig. 2, at the [-th layer, visual

prompts P‘(’li)su“:L are projected to the text feature space via fyroj : RP" — RP",

resulting in f"(’li)s“al. Text prompts are updated through gated fusion:
Pfle)“ = aP‘(’f)S“al +(1- a)Pflef‘l), (5)

where a € [0,1] is a hyperparameter that controls cross-modal fusion rate.

The refined image features V. € RY xD" are derived from the last image
encoder layer, while refined gene type embedding G, € RP" is obtained from
the last text encoder layer’s class token.

2.3 Adaptive Semantic Interaction Graph

Treating gene functions as independent entities neglects crucial functional de-
pendencies between genes [17]. We propose an Adaptive Semantic Interaction
Graph (ASIG) module that explicitly constructs gene-gene interaction graphs
based on semantic relevance learned from textual descriptions, mining deep as-
sociations between independent gene embeddings.

Adaptive Graph Construction. Given gene type embeddings {G.}™* from
Section 2.2, where N8 denotes the number of genes. We first project embeddings
into an interaction space Z € RV**P" via a learnable linear layer. The semantic
affinity matrix A°8*s is computed as:

T

A8 — softmax (ZZ
VDr
where each element A'°8**s[; j] indicates the semantic similarity between gene
C; and C;. For each gene node, we adaptively select top-k semantically relevant
neighbors based on A°81*s to construct a adjacency matrix A € {0, 1}V**NF,
Semantic-Aware Gating Aggregation. To enhance feature aggregation, in-
spired by knowledge-aware graph attention mechanisms [11], we propose a gated
attention mechanism that adaptively modulates neighbor influence. For target
gene C; and its neighbors C; € N#°", the attention weight is computed as:

) c RNngg , (6)

~ exp(Z; © tanh(Z; + Z;))
ZCkEM eXp(Zk ® tanh(Zi + Zk)) 5

Bij (7)
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Table 1. Performance comparison of different models under traditional supervised (X)
and zero-shot (v') learning modes.

HER2+ cSCC
MSE| PCCa@M?t PCC@HtT MSE| PCCa@Mt PCCQH?T

Model ZS

ST-Net 6] X 0.066 0.314 0.446 0.055 0.409 0.513
HistoGene [13] X 0.058 0.291 0.422 0.052 0.428 0.514
THItoGene [9] X 0.051 0.261 0.396 0.075 0.374 0.465

BLEEP [16] X 0.058 0.323 0.421 0.057 0.331 0.461
TRIPLEX [3] X 0.044 0.314 0.484  0.060 0.484 0.596

SGN [17] X 0.089 0.314 0.424 0.055 0.384 0.456

Ours X 0.053 0.355 0.497  0.051 0.491 0.584

SGN [17] v 0137 0.305 0.417  0.096 0.398 0.477

Ours v 0.125 0.329 0.466 0.062 0.463 0.542

where tanh(-) serves as a non-linear activation function, ® denotes element-wise
multiplication. This formulation enables each gene to dynamically adjust the
influence of its neighbors based on their semantic relevance. Neighbor feature of
target gene C; is aggregated as ZN = Zc eNEene Bi; Z;
The final gene type embedding Fg for gene C; is obtalned by concatenating
Z; (original feature) and ZV (aggregated neighbor feature), followed by a linear
projection:
FE =W/[2; © Z] . (8)

where (C) denotes concatenation and W € R?P**P" ig a learnable weight matric.

2.4 Gene Expression Prediction

With refined image patch features {V;}¥,, following SGN [17], we construct a
graph based on spatial position and feature similarity, followed by feature refine-
ment using a GraphSAGE network to obtain the final patch features {Fy}Y
Then, with gene type embedding F&, zero-shot expression prediction of gene type
c is performed as:

(Vi il = {FV-FeT}V . (9)

We train the model with a combined loss function that includes mean squared
error (MSE) and batch-wise Pearson correction coefficient (PCC) losses. The
Lse measures the difference between predicted {yi7c}f\/:1 and true gene expres-
sion values {y; c}¥,, while the £,.. encourages their correlation. The total loss
is thus defined as: £ = Lige + Lpce-

3 Experiment

3.1 Experimental Setup

Datasets. We experiment with two datasets: human HER2 positive breast can-
cer (HER2+) dataset [1] with 36 tissue sections from 8 patients and human
cutaneous squamous cell carcinoma (cSCC) dataset [8] with 12 tissue sections
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Table 2. Ablation study of our model components on cSCC dataset. ZS denotes
learning modes, where “v” indicates zero-shot learning and “X” indicates traditional
supervised learning. “Trans” means replacing ASIG with a transformer layer.

78 NDA-IFE _ PGGP aqic MSE,,p | PCC@Mt PCC@Ht
prompt V2T
v X v v v 8.70 0407 0.480
v v x X v 9.21 0431 0510
v v /X v 9.52 0.443 0522
X v X v 5.45 0456 0541
v v v v X 7.50 0433 0514
v v /7  Trams. 1020 0445 0528
X v ;oo v 5.08 0.491  0.584
v v v v 6.23 0463  0.542

from 4 patients. We follow the dataset pre-processing settings of [17] and cross-
fold validation settings of [3]. Past works selected the top 250 highly expressed
genes per dataset for prediction. To compare with them, in the zero-shot set-
ting, we use their unselected gene types in training as seen gene types and their
selected gene types in testing as unseen gene types.

Evaluation Metrics. Our method is evaluated with mean squared error (MSE),
mean PCC for all genes (PCCQ@QM) and for the top 50 highly predictive genes
(PCC@H).

Implementation Details. We train our model respectively for 80 epochs and
100 epochs on the HER2+ dataset and ¢SCC dataset with batch size 1, where a
whole slide image contains up to hundreds of patches in two datasets. We employ
a learning rate of 5 x 107* and weight decay of 1 x 107%. All experiments are
conducted on a single NVIDIA GeForce RTX 3090.

3.2 Cross-validation performance on ST datasets

We compare with state-of-the-art methods on the HER2-+ and ¢SCC datasets.
As shown in Table 1, our framework significantly advances the zero-shot gene
expression prediction paradigm SGN [17]|, while maintaining competitive per-
formance in supervised learning. In the zero-shot setting, our method compre-
hensively outperforms SGN, demonstrating strong generalization to unseen gene
types through dynamic cross-modal alignment and gene interaction modeling.
Notably, our zero-shot predictions significantly narrow the gap with supervised
approaches. On ¢SCC, the PCC@H difference between our zero-shot (0.542) and
supervised TRIPLEX (0.596) is only 9%, compared to SGN’s 29% gap (0.477
vs. 0.596). Compared to traditional supervised methods, our framework exhibits
competitive performance. Our supervised results PCCQM rank first among all
methods on two datasets.

3.3 Ablation Study

To quantitatively evaluate the effectiveness of our proposed components, we
conduct ablation studies on ¢SCC dataset, as illustrated in Table 2. Removing
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Fig. 3. Visualization of ablation study. (a) Visualization of the ASIG module’s impact
on gene expression prediction, using MT-CO3 and its neighbor genes (found by ASIG)
as an example. (b) t-SNE visualization of input and output patches features of NDA-
IFE module. (c) Hyper-parameter analysis of fusion ratio o in PGGP module and
number of neighbors top-k in ASIG module.

NDA-IFE results in performance decrease in both PCC and MSE, highlight-
ing the necessity of fine-grained cellular spatial information for accurate gene
expression prediction. As shown in Fig. 3 (b), As shown in Fig. 3 (b), using
the COL1A1 gene as an example, we find that patch features processed by the
NDA-IFE module show a clearer separation of high and low gene expression lev-
els. The absence of cross-modal prompt interaction in PGGP module decreases
performance in both learning paradigms, indicating that dynamic cross-modal
alignment prevents overfitting by adaptively aligning gene features with histo-
logical contexts and capturing generalizable pathology-gene associations in zero-
shot settings. Both removing ASIG module and replacing it with a transformer
layer degrade performance, indicating that explicitly models gene-gene depen-
dencies based on semantic relevance outperforms uniform attention mechanisms.
As shown in Fig. 3 (a), we observe that MT-CO3 and its neighboring genes are
related to cellular respiration. The baseline model without ASIG shows a de-
crease in prediction accuracy for MT-CO3.

As shown in Fig. 3 (c), Hyper-parameter analysis reveals: Optimal cross-
modal fusion at o = 0.2 balances pathological context and gene-specific seman-
tics, and the optimal ASIG neighbor count is & = 4 based on PCC metrics.

4 Conclusion

In this paper, we propose a deep association multimodal framework for zero-
shot gene expression prediction, which includes supplementing image features
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with tissue-wide structure and fine-grained nuclei distributions, dynamic map-
ping between tissue morphology and gene semantics via iterative vision-language
prompt learning, and adaptive gene interaction modeling based on semantic
relevance. Experimental results on benchmark datasets demonstrate that our
method outperforms SGN, while maintaining competitive performance with su-
pervised approaches.
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