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Abstract. Histopathology images capture tissue morphology, while spa-
tial transcriptomics (ST) provides spatially resolved gene expression, of-
fering complementary molecular insights. However, acquiring ST data is
costly and time-consuming, limiting its practical use. To address this, we
propose HAGE (Hierarchical Alignment Gene-Enhanced), a framework
that enhances pathology representation learning by predicting gene ex-
pression directly from histological images and integrating molecular con-
text into the pathology model. HAGE leverages gene-type embeddings,
which encode relationships among genes, guiding the model in learning
biologically meaningful expression patterns. To further improve align-
ment between histology and gene expression, we introduce a hierarchical
clustering strategy that groups image patches based on molecular and vi-
sual similarity, capturing both local and global dependencies. HAGE con-
sistently outperforms existing methods across six datasets. In particular,
on the HER2+ breast cancer cohort, it significantly improves the Pear-
son correlation coefficient by 8.0% and achieves substantial reductions in
mean squared error and mean absolute error by 18.1% and 38.0%, respec-
tively. Beyond gene expression prediction, HAGE improves downstream
tasks, such as patch-level cancer classification and whole-slide image di-
agnostics, demonstrating its broader applicability. To the best of our
knowledge, HAGE is the first framework to integrate gene co-expression
as prior knowledge into a pathology image encoder via a cross-attention
mechanism, enabling more biologically informed and accurate pathology
representations. https://github.com/uta-smile/gene_expression
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1 Introduction

Histopathology images offer rich morphological insights into tissue architec-
ture and cellular features, while spatial transcriptomics (ST) provides location-
specific gene expression data that can illuminate disease progression and patient
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outcomes. However, acquiring ST data is costly and resource-intensive, whereas
H&E-stained histology images are routinely generated in clinical settings [2].
This disparity motivates the development of methods to infer gene expression
directly from histopathology. By leveraging paired pathology images and spatial
expression spots, deep learning systems can extract visual features predictive of
various molecular biomarkers, enabling more efficient molecular profiling without
the need for expensive ST sequencing.

In typical ST data, each tissue spot corresponds to a patch in a whole slide
image (WSI), providing expression measurements for thousands of genes. Deep
learning has been explored to map histopathology to transcriptomic data. For
instance, ST-Net [1] employs a CNN-based encoder for direct prediction, while
HisToGene [2| and Hist2ST [3] enhance ST-Net by incorporating spatial rela-
tionships through Vision Transformers and graph-based models. THItoGene [4]
further utilizes graph neural networks and dynamic convolutional networks.
However, these methods rely on predefined spatial assumptions, which may not
generalize well to heterogeneous tissues such as cancer, where gene expression
patterns are highly variable |5]. Another research direction explores contrastive
learning to align histology and gene expression representations in a shared la-
tent space, such as BLEEP [5] and mclSTExp [6]. While these methods improve
generalization, they often face data limitations when trained from scratch. More-
over, most existing methods treat gene targets as independent outputs, focusing
solely on image-expression alignment and neglecting critical gene-gene relation-
ships. Although these methods represent progress, a more biologically grounded
framework is needed to fully integrate histology and transcriptomics.

Motivated by these challenges, we adopt the UNT [8] foundation model and
introduce a hierarchical clustering strategy to efficiently align patches sharing
morphological and molecular similarities. The use of foundation models for ex-
tracting image representations has been widely adopted in histology [9]. To move
beyond purely visual features, we further strengthen our approach by integrat-
ing different modalities, as fusion has shown significant potential across a range
of tasks and domains in bioinformatics [L0H15]. Since co-expression correlations
indicate functional associations, as genes in the same biological process are often
co-regulated |16], we incorporate gene embeddings from Gene2Vec [17], trained
on co-expression data, into the image encoder through cross-attention, captur-
ing co-regulation patterns that better align histological features with gene ex-
pression. This enriched biological context helps capture “invisible” signals where
microenvironments induce significant gene expression variability.

Our contributions are threefold: 1) We propose a novel patch-level framework
that integrates gene co-expression into the pathology image encoder, leveraging
gene co-activation patterns as biologically grounded prior knowledge to guide
representation learning. This enables the encoder to attend to visual regions
with awareness of gene-gene coordination, improving biological interpretability.
2) We introduce a hierarchical clustering strategy that aligns image-expression
pairs across local and global levels, enhancing efficiency and predictive accuracy.
3) Comprehensive evaluations on six datasets across gene expression prediction,
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patch-level cancer classification, and WSI-level cancer classification demonstrate
state-of-the-art performance and more biologically grounded representations.

2 Methodology

2.1 Preliminaries

Our learning pipeline is illustrated in Figure We denote the set of gene
embeddings as G = {g1,82,...,8/g|} with G € RIGI%ds  retrieved from the
Gene2Vec [17] library. Given histopathology image patch with features x € R%
extracted by a frozen UNI model, our Gene-informed Image Encoder (GE),
far(+), fuses the image features with G via cross-attention to yield gene-guided
image embeddings: z' + fgp(x,G) € R? In parallel, the raw gene expression
vector y € R% is normalized and fed into a three-layer MLP Expression Encoder,
feEe(+), to produce expression embeddings: z¢ <+ fpr(y) € R%.

As stated in Section [T} our goal is to infer gene expression from images. There-
fore, improving the alignment between modalities is crucial for accuracy. To this
end, we align the paired embeddings {z!,z¢}Y | in the local view. Specifically, we
enforce cross-modality consistency using the CyCLIP [18| loss, denoted as L¢,
and ensure robust alignment using the well-known CLIP [19] loss. Due to space
limitations, we only provide the formulation for the CyCLIP loss, and refer the
reader to [19] for details on the CLIP loss. The CyCLIP loss is computed as:

N
Z zj,z,c (2,26 z5) %ZZ z;,% Zz>)2> (1)

j=1k=1 j=1k=1

with (-,-) represents the inner product.

In the global view, we apply k-means to raw expression y to form ki clusters.
Within each cluster, we further cluster the corresponding x into ks subclusters.
Let {c¢, c}"1%*2 denote the centroids in the expression and image spaces, re-
spectively; these centroid pairs are aligned using the CLIP loss [19], LcoLciobal-

A three-layer MLP Expression Predictor, fp,cq(:), then maps the gene-guided
image embeddings to predicted expression vectors: ¥ < fprea(z'). We train
frrea(-) with a Pearson Correlation Coefficient loss:
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where Zj and y; are the mean of predicted expression and target expression
for gene j across all N samples, respectively. While € is a small constant for
numerical stability. The total loss is defined as:

L=MLcy+ NLcLrocat + A3LoLGIobal + MLpcC- (3)

At inference, given a patch features x, we compute: ¥ = fpreca(for(x, G)),
thereby predicting the gene expression profile for each patch.
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Fig. 1. HAGE predicts gene expression from pathology images by aligning expression
profiles and image patches in a shared embedding space. 1) Given a list of interesting
gene names, the corresponding gene embeddings retrieved from Gene2Vec are fused
with image features from a frozen foundation model via GE. 2) Expression features are
encoded through an MLP-based Expression Encoder. 3) HA aligns gene-guided image
and expression embeddings at both local and global levels using contrastive learning. 4)
The Expression Predictor predicts gene expression from gene-informed image features.
At inference, given a WSI, the model outputs the predicted gene expression, while GE
remains applicable to other downstream tasks.

2.2 Gene-informed Image Encoder

We design a gene-informed image encoder (GE) that merges patch-level image
embeddings with gene embeddings derived from Gene2Vec. Traditional image
encoders that lack explicit gene information merely regress expression values,
without capturing gene identity or correlations. By integrating Gene2Vec em-
beddings, our encoder learns both individual gene features and gene—gene rela-
tionships, allowing it to align visual features with biological context.

We project the image features {x;}Y; € R% and the gene embeddings

{g; }‘jill € R% into a common space of dimension d using learnable projection
matrices. Treating the visual features as queries and the gene features as keys
and values, we employ a cross-attention mechanism to fuse the two modal-
ities. Standard residual connections and a two-layer MLP block are then ap-
plied to refine the fused representations. The overall transformation is given by:
z! «+ f(x;) = fuLp (fAtm(wai, {W,g; }ﬁll) + Wxxi), yielding gene-informed
image embeddings that are enriched with biologically grounded information. No-
tably, the trained GE module is reusable in other downstream tasks beyond gene
expression prediction, enabling broader applicability in biomedical applications

(see Section (3.2 for details).
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2.3 Hierarchical Alignment Module

The data for paired image patches and gene expression profiles is scarce, which
makes it difficult for contrastive learning methods to achieve robust alignment
from limited pairs alone. The proposed Hierarchical Alignment (HA) module
addresses this issue by gathering additional pairs in two stages of clustering.

First, we apply k-means with k = k; to cluster raw gene expression vectors
{y:}¥, € R into coarse clusters {C'p}’;l:17 such that C, = {i : y; ~ cluster p}.
This step prevents the problem of grouping patches by appearance alone, since
patches may share morphological features yet differ substantially in gene ex-
pression. For each coarse cluster C),, we further cluster the corresponding image
features {x;}icc, using k-means with k = ks, yielding subclusters {Sp,q}(]f:l.
For each subcluster S;, 4, we compute the centroids in both expression and im-
age domains:‘ Chy= ﬁ > jes,., 25 and cl, = qu‘ > jes,.. z. These centroid
pairs (cg’ @ c;’q) are used as additional alignment pairs. By first clustering based
on gene expression, and then on morphology, this two-tier approach provides a
global view of the data and adds more training pairs.

3 Experiments

3.1 Implementation Details

Datasets. For the gene expression prediction task, following the setting of
related works [3,/4,(6], we select 32 breast samples and 12 skin samples from
HER2+ |21] and ¢SCC [22]| datasets, respectively. To assess the quality of the
learned embeddings, we evaluate patch-level classification on PCAM [23] and
SkinCancer [24] datasets. For WSI-level diagnosis, we use TCGA-BRCA [25] for
cancer subtype classification (e.g., IDC and ILC) and the SLN-Breast |26] for
positive or negative carcinoma prediction. Totally, six tasks are conducted.

Gene list selection. We apply a standard gene selection pipeline as described
in [6]. We compile a list of the top 1,000 highly variable genes for each WSI and
intersect these lists to identify common genes across all WSIs. We then refine
the gene list by intersecting it with the Gene2Vec dictionary, yielding a final set
of 771 genes for the breast dataset and 168 genes for the skin dataset.

Baselines and Evaluation metrics. For the gene expression prediction task,
we compare our approach against six SOTA methods: ST-Net [1|, HisToGene [2],
Hist2ST [3], THItoGene [4], BLEEP [5], and mclSTExp [6]. To ensure fairness,
we adopt the leave-one-out protocol used by previous studies |1,6] and perform
five experimental runs with different training and validation splits for each left-
out subject. Following related works |3H6], performance is evaluated using Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Pearson Correlation
Coefficient (PCC) metrics. In particular, we compute the PCC for all genes in
the gene list as well as for the top 50 highly expressed genes (HEG).
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Other downstream tasks. To ensure a fair comparison, we do not evaluate
against the six baselines mentioned earlier. Instead, we report the performance
of our gene-informed image encoder and UNIv1 [8]. Notably, none of the datasets
used in our study overlap with the testing datasets, eliminating potential data
leakage. We employ 5-fold cross-validation and assess performance using Accu-
racy, AUC, and Recall, reporting the mean and standard deviation.

3.2 Results

Gene expression prediction. After leaving one subject out, we split the
remaining data into training and validation sets at a 4:1 ratio and run five
trials per subject. Training lasts 15 epochs for HER2+ and 100 for ¢SCC, with
early stopping after 5 epochs. Both breast and skin cancer experiments use same
hyperparameters: A\; = Ay = 10, Ao = A3 = 1, k1 = 30, ky = 2, and d = 1024.
CLIP loss temperature is fixed at 7 = 0.07. We optimize with Adam (learning
rate 10~%, weight decay 107%) and StepLR (step size 10, decay factor v = 0.5).

Table 1. Gene expression prediction performance of various methods.

Dataset HER2-+

Methods PCC (Al) 1 PCC (HEG) 1 MSE | MAE |
ST-Net |1 0.0561 £+ 0.017 0.0134 4+ 0.013 0.5312 4+ 0.008 0.6306 + 0.011
HisToGene [2|| 0.0842 + 0.015 0.0711 4+ 0.014 0.5202 + 0.014 0.6422 + 0.005
Hist2ST |3] 0.1443 £+ 0.013 0.1849 £+ 0.015 0.5135 4+ 0.009 0.6087 + 0.013
THItoGene [4|| 0.1726 £ 0.018 0.2809 £ 0.013 0.5012 + 0.011  0.5956 =+ 0.009
BLEEP |5 0.1873 £ 0.005 0.2909 £+ 0.016 0.6015 4 0.016 0.5824 + 0.004
mclSTExp [6] | 0.2304 + 0.011 0.3866 & 0.021 0.5897 + 0.013  0.5813 =+ 0.008
HAGE (ours) |0.2489 + 0.001 0.4458 + 0.003 0.4830 + 0.005 0.3606 + 0.002
Dataset c¢SCC

Methods PCC (All) PCC (HEG) 1 MSE | MAE |
ST-Net |1 0.0012 £ 0.022 0.0018 £ 0.015 0.6806 & 0.006 0.6404 + 0.003
HisToGene [2|| 0.0771 + 0.024 0.0919 £+ 0.012 0.6805 £ 0.012 0.6234 + 0.007
Hist2ST |3] 0.1838 £ 0.011 0.2175 £ 0.016 0.6748 4 0.017 0.6107 £ 0.006
THItoGene [4]| 0.2373 & 0.009 0.2719 £+ 0.012 0.6546 £ 0.006 0.6012 + 0.019
BLEEP |5 0.2449 £ 0.017 0.3122 £ 0.027 0.5163 £ 0.007 0.5399 + 0.015
mclSTExp [6] | 0.3235 + 0.019 0.4261 £+ 0.016 0.4302 £ 0.005 0.5208 £+ 0.009
HAGE (ours) |0.3397 + 0.006 0.4607 + 0.007 0.4248 + 0.002 0.3296 + 0.002

Table [I] summarizes HAGE’s performance against six SOTA methods on
HER2-+ and ¢SCC datasets. On HER2+, HAGE achieves a PCC of 0.2489 for all
genes and 0.4458 for the top 50 HEG, improving by 8.0% and 15.3%, respectively,
over the second-best method. It also attains an MSE of 0.4830 and MAE of
0.3606, reducing errors by 18.1% and 38.0% relative to mclSTExp.

On ¢SCC, HAGE achieves a PCC of 0.3397 (all genes) and 0.4607 (HEG),
improving by roughly 5.0% and 8.1% over mclSTExp. While MSE improvement
is modest, MAE decreases significantly by 36.7%. These results confirm HAGE’s
consistent advantage in expression prediction across cancer types.
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Ground truth
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Fig. 2. Visualization of ITGB6 gene expression predictions. (Left) Ground truth for
slide D2 in the HER2+ dataset, (middle) fixed scale, and (right) variable scale.
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Figure [2| visualizes ITGB6 , a key diagnostic biomarker for breast cancer,
particularly in the HER2+ dataset. High ITGB6 expression implies tumor pres-
ence; if the model can effectively localize such regions, it demonstrates potential
for clinical interpretation. Our method achieves a PCC of 0.659, significantly
outperforming the SOTA method, mclSTExp (0.478). In the variable scale set-
ting, both HAGE and mclSTExp capture the overall trend, but the latter fails
to accurately reflect expression levels at certain spots. In the fixed scale setting,
which compares predictions to absolute ground truth values, mclSTExp struggles
to identify tumor regions and distinguish signals from connective and invasive
tumor tissues, whereas HAGE provides a clearer, more precise prediction.

Tumor classification. Patch-level. We evaluate our learned representations
using a linear probing protocol for patch-level tumor classification. The classi-
fier is a single linear layer that projects the input embeddings onto the target
classes. Both the breast (e.g., PCAM) and skin (e.g., SkinCancer) linear probing
tasks are trained for 10 epochs using cross-entropy loss. We report the average
performance of our five models and the UNIv1 model.

Slide-level. SLN-Breast followed the preprocessing steps and implementation
settings described in , while TCGA-BRCA was preprocessed using the de-
fault settings of CLAM . We use the pretrained gene-guided encoder with the
best performance in PCAM classification as the image encoder and adopt AB-
MIL to aggregate patch-level features into slide-level embeddings. Despite
using standard mechanisms and lightweight modeling choices, the integration of
gene co-expression enhances downstream performance. Figure [3] shows that our
gene-informed encoders consistently outperform UNIv1 in both patch-level and
slide-level classification tasks on breast and skin datasets.

PCAM SkinCancer SLN-Breast TCGA-BRCA

= 1.00 = I = UNI
0.95 0.9 I 0917 mm HAGE
0.901 E I 0.991 ~ I 0.8
0.8 0.7 I
0.85 8

0.9
ACC AUC Recall ACC AUC Recall ACC AUC Recall ACC AUC Recall

Fig. 3. Comparison of the gene-informed image encoder in HAGE and the UNIv1 image
encoder on patch-level and slide-level classification across breast and skin datasets.
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Table 2. Impact of each HAGE component on gene prediction on the HER2+ dataset.

Architecture PCC (A) 1+ PCC (H) + MSE | MAE |
HAGE w/o both HA and GE (I) 0.2330 0.4131 0.5081 0.3547
HAGE w/o Gene-informed Encoder (IT) 0.2338 0.4164  0.5076 0.3543
HAGE w/o Hierarchical Alignment (III) 0.2474 0.4410 0.4842 0.3613
HAGE with Single-layer cluster align. (IV)| 0.2461 0.4390  0.4812 0.3603

3.3 Ablation Study

Impact of each component. Table [2] ablates two key components of HAGE:
the gene-informed encoder (GE) and hierarchical alignment (HA). Removing
both (I) significantly reduces performance, confirming that morphological fea-
tures alone are insufficient for gene expression prediction. Retaining HA without
GE (II), or GE without HA (III), improves performance over the baseline but
still falls short of the full HAGE. While clustering reduces MSE and MAE for
both HA and its variant, only HA consistently improves all metrics. Replacing
the two-level hierarchical alignment with a single-layer cluster alignment (IV)
degrades performance, suggesting that cluster formation impacts results more
than simply adjusting their number (see Table [3| for details). These results em-
phasize the necessity of integrating gene-level knowledge into the image encoder
and the effectiveness of hierarchical alignment in capturing molecular patterns.

Impact of cluster. We conduct a grid search over k; and ks to evaluate
the robustness of the HA component. As shown in Table [3] performance re-
mains relatively stable across a practical range of cluster settings (e.g., k1 €
{10, 20, 30,40}, ko € {2,3}), indicating that our method is not overly sensitive
to moderate adjustments in these hyperparameters. While clustering facilitates
the alignment of patches with similar molecular characteristics, robust perfor-
mance across variations in cluster size is desirable, as large result changes under
different configurations may suggest noise or biologically implausible groupings.
In practice, we set k1 = 30 and ko = 2 to balance performance and efficiency.

The primary factor influencing performance is how clusters are formed. We
test an alternative approach that relies solely on gene expression, creating a
single-layer clustering by setting k1 = 60 and removing the subcluster step.
Although this approach results in the same total number of centroids as our
hierarchical structure, it yields lower performance (Table .

Table 3. Grid search on the impact of cluster settings on the HER2+ dataset.

ks = 2 ks — 3

Metrics [PCC (A) PCC (H) MSE MAE |[PCC (A) PCC (H) MSE MAE
ki — 10| 0.2510 0.4499 0.4856 0.3606] 0.2480  0.4433 0.4832 0.3611
ki = 20| 0.2480 0.4422 0.4817 0.3605| 0.2485  0.4447 0.4862 0.3567
ki = 30| 0.2503  0.4490 0.4823 0.3604| 0.2463  0.4405 0.4833 0.3612
ki = 40| 0.2493  0.4468 0.4841 0.3603| 0.2501  0.4504 0.4826 0.3606
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4 Conclusion

We introduce HAGE (Hierarchical Alignment Gene-Enhanced), a framework
that integrates gene features and hierarchical clustering to infer spatial tran-
scriptomic signals from histopathology images. By incorporating gene-specific
information into the image encoder via cross-attention, HAGE learns represen-
tations that are both visually and biologically informative. Experiments on six
datasets demonstrate its effectiveness, showing stronger correlations, lower error
metrics, and adaptability across diverse tissues and clinical contexts. Overall,
HAGE offers a robust, gene-aware pathology representation that enhances both
expression inference and downstream task performance.
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