‘ 1is MICCAI paper is the Open Access version, providec

MICCAI :

Target Prior-enriched Implicit 3D CT
Reconstruction with Adaptive Ray Sampling

Qinglei Cao'f, Ziyao Tang!'f, and Xiaoqin Tang'”

! College of Computer and Information Science, Southwest University, Chongging
400715, China
tangx0530@swu.edu.cn

Abstract. Existing implicit 3D reconstruction methods utilizing NeRF
and its variants for internal CT often overlook anatomical priors of target
objects, limiting accuracy in ultra-sparse view scenarios. We present TP-
INR, a novel framework that leverages sparse-view projections to gen-
erate high-quality anatomical priors for structural encoding of objects.
By combining prior-based structural encoding with positional encoding,
TP-INR enhances implicit representations for precise CT reconstruction
with minimal supervision in these challenging conditions. Additionally,
we tailor the implicit framework for medical applications through re-
fined network design and adaptive ray-based training, improving both
accuracy and efficiency. Experimental results across various organ re-
gions demonstrate that TP-INR outperforms state-of-the-art methods in
reconstruction quality and efficiency, relying solely on projection data.
Code is available upon request.
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1 Introduction

In recent years, the rapid advancement of Cone-Beam Computed Tomography
(CBCT) has intensified concerns regarding the radiation exposure associated
with X-rays. Current research addresses these concerns by focusing on reducing
radiation doses and the number of projections. This paper emphasizes the lat-
ter, aiming for high-quality CBCT reconstruction with ultra-sparse views. Tra-
ditional analytical methods, such as FBP [10] and various iterative algorithms
[16], often produce suboptimal results for sparse-view CT reconstruction. Fully-
supervised learning approaches encounter challenges related to data acquisition
and generalizability [23J9I6/25/T2ITRIT3IT5]. In 2020, Ben et al. introduced Neu-
ral Radiance Fields (NeRF) [I4], paving the way for innovative implicit 3D CT
reconstruction. Since then, researchers have adapted NeRF for sparse-view CT
reconstruction, creating new approaches grounded in X-ray imaging principles.

Despite progress, reconstruction methods for ultra-sparse scenarios still en-
counter several issues. (1) State-of-the-art methods like NAF [24] and SAX-NeRF
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Fig. 1. Sparse-view 3D CT reconstruction with the state-of-the-art methods. Compar-
isons using NeRP [I7], NAF [24], and SAX-NeRF [2] highlights our superior perfor-
mance in learning efficiency, reconstruction precision, and artifact removal.

[2] improve learning efficiency through per-ray processing but sacrifice quality
due to position encodings optimized for smaller networks. In contrast, NeRP
[17] achieves better quality at the cost of increased time complexity and reliance
on additional priors. (2) Networks that depend solely on positional encoding
often produce low-resolution, overly smooth reconstructions, lacking detail and
introducing artifacts due to inadequate supervision. (3) Recent methods utilized
approximate priors to pre-train implicit neural representation (INR) networks.
Typically, these priors are derived from similar body parts across different indi-
viduals or time points [I7J3]. Although this technique improves reconstruction
accuracy, its practical application in engineering contexts is still limited.

To tackle these challenges, we present an innovative implicit CT reconstruc-
tion method, TP-INR. (1) Our approach prioritizes reconstruction accuracy and
learning efficiency through a specialized INR architecture tailored for medical
imaging. Distinct from existing models, TP-INR integrates prior-based struc-
tural encoding and a refined network design to enhance accuracy using only
project data, while an adaptive ray-based training strategy boosts efficiency, cre-
ating a solid framework for ill-posed CT reconstruction. (2) TP-INR enhances
position encoding by incorporating target priors for structural encoding, provid-
ing additional structural insights for high-quality reconstruction with minimal
supervision. (3) We define ’target prior’ as anatomical priors derived from an
object’s projection data, allowing for object-specific prior assignment that elim-
inates the need for approximate priors, thereby enhancing practical usability.
As shown in Fig. [[] IP-INR surpasses current state-of-the-art methods in both
quality and efficiency across evaluated metrics. The key contributions are sum-
marized as follows:

— We propose TP-INR, a specialized implicit model for ultra-sparse CBCT
reconstruction using only projection data. By integrating prior-based struc-
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tural and positional encoding for voxels on adaptively sampled rays, TP-INR
enhances reconstruction accuracy and efficiency with minimal supervision.

— We developed a CUDA-based Target Prior Estimator (TPE) that rapidly
derives high-quality target priors, enabling reliable anatomical prior assign-
ment to sampled voxels and improving structural encoding.
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Fig. 2. Overview of the TP-INR 3D CT Reconstruction Network. (a) The model iden-
tifies challenging rays from input projections using the ARS strategy, guided by loss
values. Each voxel along these rays is encoded with target prior structure and positional
information (Es and Ep), which are fused to create an implicit neural representation
for CT image reconstruction and multi-view loss calculation in projection domain. (b)
The TPSE module estimates target prior from projections via the TPE algorithm.

2 Methodology

2.1 Overall Framework

Fig. a) illustrates the architecture of our TP-INR model, taking sparse-view
projections (I,;) as input and outputs a reconstructed 3D volume (o). Inspired by
Hard Sample Mining [19], we employ an Adaptive Ray Selector (ARS) to target
challenging rays for efficient model training. The ARS strategy traces rays from
the input projections, evaluates their projection domain losses (Vf), and iden-
tifies challenging rays (R;) for targeted training, defined as Ry = ARS(Igt, V f).
Given a challenging ray r € Ry, it defines each voxel along r as v = (x,y, 2, 0),
v € r, where (z,y, z) is the spatial position and 6 denotes a target prior, which
provides positional and structural encodings for implicit learning. The INR net-
work then learns the mapping function between the encoded representation of v
for individual voxels and their intensity distribution o, expressed as:

o = Rec(v; ¢) = Rec(v,y,2,6;¢), v € R;. (1)
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It utilizes E'p for positional encoding and Fg for prior-based structural encod-
ing. The positional encoding F), is obtained by encoding the point p = (z,y, 2)
using a Gaussian Fourier encoder v, which is particularly effective in capturing
intricate medical details [22]. Following this encoding, a two-layer multi-layer
perceptron (MLP) network f, with parameters ¢; is employed to represent the
positional features. Thus, F}, = Ep(z,y, z) = fp(7(p); #1). The prior-based struc-
tural encoding Fy is obtained from our Target Prior Structural Encoder (TPSE)
module which comprises both prior estimation and structural encoding, as shown
in Fig.[2[b), represented by Fy = Eg(6). The details of the TPSE module will be
elaborated in the section 2.2. The positional and structural feature encodings,
F, and Fj, are subsequently concatenated and fed into a MLP network (with
parameters ¢3) for implicit learning. This network predicts the radiance density
o at each voxel along the ray with ¢ = M LP (Concat(F), Fs); ¢3), adopting Sine
Activation function [20] in fully connected layers and Sigmoid activation in the
final layer to ensure the non-negativity of the predicted reconstruction results.

According to the Beer-Lambert law [2I], the intensity of an X-ray decreases
as it passes through an object due to the exponential integral of the radiance
density. We discretize it and apply it to our model, obtaining:

Ipl'ed(r) = MG(U, T) = IO . <1 —e 25:1 gptp> (2)

where o, denotes the predicted radiance density of voxel p, t, represents
the distance between two adjacent voxels, and P is the total number of vox-
els along the ray path r. We define My(o, ) as the projection function of the
ray r in the 6 direction, which intersects an object with radiance densities of
0. The corresponding values in the prediction domain are denoted as Ipyea (7).
With this multi-view projection function, we compute the L2 loss between the
predicted projections of challenging rays (r € Rs) and their ground truth for
model training:

1
Luise = R > Mprealr) = Ise(r)13 (3)
S rERs

2.2 Target Prior Structural Encoder

As shown in Fig. b), the structural feature encoding F; encapsulates an object’s
target prior 6 produced by our TPE algorithm using the structure encoder Eg.
At position p = (x,y, 2), we extract its anatomic structure (Qnxnxn(6p)) for
structural encoding, with Q,,x.x» being its n-sized neighborhood. Subsequently,
F; is obtained through a two-layer MLP network (fs) parameterized by ¢o,
expressed as Fy = Es(6) = fs(Qnxnxn(0p); P2).

The quality of target prior (6) estimated from projections significantly im-
pacts the structural encoding F and the final radiance density o. This neces-
sitates high-quality estimates of 6 while also prioritizing time efficiency. To ad-
dress this, we developed our TPE algorithm (see Algorithm 1), which iteratively
estimates priors for voxels along challenging rays using CUDA. Starting with
the projections Iy, the algorithm performs multiple forward projections and
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Algorithm 1 TPE: Target Prior Estimator
Input: Iy, K, A\1; Mg()

1: Initialize 6 = Count =0 € R®*,Vf =0 € R
2: for j=1,...,K do

Select challenging rays with ARS strategy:

R} = ARS(Ig:, Vf)

4

5: Calculate the challenging rays’ projection losses:

6: Ipred(Rg) = M0(6]7 R?@) X

T Vf = Ige(RE) — Iprea(RY)

8 Determine voxels’ update rate and Local Variation:
max(Count?)

9: step, = ,p=(z,y,2) € RZ

Count:{7
10: LV (6}) = aver(Qmxmxm(6})) — 63,
11: Compute the update gradient for challenging voxels:
12: p=Vf-step, + A - LV(6}),p € Ri
13: Update the target prior for the challenging voxels:
14: &) =6+ pu,p € R]
15: Update the sampling count for the challenging voxels:
16: Countgfl = Count}, + 1,p € R
17: end for

Output: 6 = 6%

backward updates, progressively minimizing reconstruction errors and yielding
a target prior for individual voxels. The iterative backward update process is
defined as follows:

NI ,

0" =0, + mp € R} (4)

where j is the iteration number, and p updates 6 for voxel p € R%, expressed as:
p=V[-step, + A - LV(6,),p € RI. (5)

Here, V f signifies the difference between the predicted projection and the ground
truth, serving as the gradient for updating 6 along each challenging ray. To
tackle uneven voxel sampling, which can affect convergence rates and lead to
local optima, we introduce an adaptive update rate, step,, defined as: step, =
mazx(Count?)/ Count;. This formula adjusts the update rate for voxel p based
on its sampling count relative to the maximum across all voxels, enhancing con-
vergence consistency throughout the dataset. Additionally, discrete ray sampling
points can make voxels along the ray path susceptible to outliers (high-frequency
noise) during updates. To counteract this, we apply Local Variation (LV) [5] to
correct p: LV (6p) = aver(Qmxmxm(0p)) —0p, where ’aver’ denotes the averaging
operation, and \; is a constant weight.

The effectiveness of our TPE algorithm in rapidly (in seconds) achieving a
high-quality target prior can be attributed to two main factors. First, each it-
eration refines the estimate based on the difference (V f) between the predicted
and measured projections, minimizing reconstruction error and ensuring conver-
gence. Starting from a zero-like initializer enables more effective correction in
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poorly reconstructed foreground voxels. Second, the LV serves as a regulariza-
tion term to reduce noise from the projections, enhancing stability and accuracy.
Our TPE algorithm generates the object’s target prior 6, independently of the
INR learning process. It occurs only once before the training or testing process,
offering a task-relevant prior for structural encoding within TPSE.

3 Experiment

3.1 Experimental Settings

Dataset and Implementation Details: Experiments were conducted on the
datasets that cover jaw, chest, abdomen, and foot regions. The chest data is from
the LIDC-IDRI dataset [I], while the others are sourced from Open Scientific
Visualization Datasets [II]. Our model, implemented in PyTorch with CUDA
10.1, runs on a RTX 3090 GPU. We utilize the Adam optimizer with a learning
rate of 0.00001. In the TPE algorithm, parameters are set as: A\; = 0.001,m =3
for the LV calculation, and each ray samples P = 128 voxels. To extract target
prior structures, the neighbor size is n = 5, and the iteration count for fast prior
estimation is K = 50. Ultra-sparse view projections were tested with 10, 20, and
30 views. Reconstruction quality was assessed using PSNR [7] and SSIM [g].

Table 1. Quantitative comparison of 3D cone-beam reconstructions across anatomies.

PSNR/SSIM

Data |Views| FDK SARI-TV NeRP NAF SAX-NeRF TP-INR
10 |20.40/.440 25.90,/.725 28.17/.821 26.04/.750 26.59/.775 30.10/.878
Jaw 20 |24.15/.616 28.61/.834 31.85/.912 29.59,.879 29.93/.888 34.91/.955
30 [26.75/.726 30.94/.895 34.48/.951 31.38/.920 32.42/.934 37.69/.975
10 |15.56/.360 22.48,/.727 26.83/.824 24.50,.787 24.44/.784 29.54/.914
Chest | 20 [20.99/.550 25.56/.836 30.66,.913 27.93/.882 27.32/.873 36.43/.978
30 [24.24/.663 27.59/.889 31.75/.935 30.01/.925 29.80/.919 39.59/.989
10 |16.72/.393 25.80,/.794 25.20/.791 24.98/.803 24.80/.826 29.49/.913
Abdomen| 20 [21.06/.535 28.56/.865 30.74/.918 28.20,/.882 28.40/.899 37.27/.976
30 [23.92/.636 30.48/.908 32.95/.947 29.81/.911 30.01/.921 40.49/.986
10 |17.92/.358 26.20/.854 26.97/.778 25.37/.856 27.20/.890 30.81/.933
Foot 20 [22.04/.439 29.31/.911 30.90/.889 29.15/.920 30.06/.932 35.50/.972
30 |24.92/.527 31.89/.946 33.03/.936 32.88,.957 32.62/.958 38.05/.983

3.2 Comparison Results

Quantitative Comparison: Table [I] provides a quantitative evaluation of the
reconstruction results across various sparse-view projections. Given the chal-
lenges of obtaining approximate priors in practical applications—where only
projection images are accessible—all methods compared rely solely on these
projections for reconstruction. Taking the chest dataset as an example, TP-
INR consistently outperforms traditional FDK [4], iterative SART-TV [23], and



Title Suppressed Due to Excessive Length 7

SAX-NeRF Ours Ground Truth

abdomen chest jaw

foot

Fig. 3. Visual comparison of reconstructed images generated by various methods rely-
ing solely on 20 projection data across four distinct anatomical regions.

implicit methods such as NeRP [I7], NAF [24], and SAX-NeRF [2], achieving
the highest PSNR and SSIM across various sparse-view scenarios. For instance,
with 20 projection views, TP-INR surpasses NeRP, NAF, and SAX-NeRF by
5.77 dB, 8.5 dB, and 9.11 dB in PSNR, respectively.

Visual Comparison: In Fig. [3] we present the visual performance of different
methods for sparse-view CBCT reconstruction. Among implicit models, the per-
formance of NeRP is adversely affected by artifacts and blurriness in the absence
of approximate priors. Although NAF and SAX-NeRF have mitigated some of
the artifacts present in NeRP, the overall image quality remains inadequate,
with persistent noise and lost details. The proposed TPAR-INR surpasses the
performance of these state-of-the-art techniques by preserving more details and
effectively suppressing artifacts, resulting in more accurate reconstructions.
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Fig. 4. Comparative analysis of learning efficiency by PSNR-Time (s) across methods
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Learning Efficiency: In practical CT imaging systems, reconstruction time is
a critical performance metric. Fig. [] presents comparisons of Time-PSNR for
NeRP, NAF, SAX-NeRF, and our method, all reconstructed using 20 projec-
tions across four 3D anatomical regions. Our method demonstrates the shortest
reconstruction time while achieving a higher PSNR value. This efficiency can be
largely attributed to our ARS strategy, which prioritizes the most challenging
rays, facilitating effective learning, especially during the early stages of training.

3.3 Ablation Study on the ARS and TPSE module

Table[2 presents a comprehensive incremental ablation study on chest data, high-
lighting the contributions of our ARS and TPSE modules. This study demon-
strates how these modules enhance reconstruction quality across various sparse-
view strategies. We also evaluated the TPE algorithm against analytical and iter-
ative methods—FDK, SART-TV, and TPE without the LV component—using
our INR model without target priors as a baseline. As shown in Table [3] TPE
with LV yields higher PSNR and SSIM values for target priors (6), resulting in
more accurate image reconstructions (o). This enhancement stems from TPE’s
adaptive gradient updating, driven by Vf and step,, which minimizes recon-
struction error and ensures convergence, along with LV’s noise suppression. No-
tably, our baseline model also delivers reasonable performance due to its refined
design and adaptive ray-based training strategy.

Table 2. Incremental Ablations: the evaluation of the ARS and TPSE modules.

baseline ARS TPSE 10 20 30
v 27.13/0.877  33.98/0.968  37.48/0.984
Vv v 28.78/0.892  35.16/0.972  38.47/0.986
Vv v 28.73/0.897  35.61/0.974  39.16/0.987
v v v | 29.54/0.914 36.43/0.978 39.41/0.988

Table 3. Ablation study on TPE’s effectiveness in generating target priors and en-
hancing reconstruction accuracy compared to traditional methods.

Views|Prior/Pred| baseline FDK SART-TV TPE w/o LV TPE
10 o - 15.56/0.360 22.48/0.727 22.83/0.689 24.33/0.758
o 27.13/0.877|27.83/0.874 28.32/0.885 28.55/0.889 29.54/0.914
20 o - 20.99/0.550 25.56/0.836 26.22/0.818 29.12/0.907
o 33.98/0.968|35.26,/0.973 35.36/0.973 35.35/0.973 36.43/0.978
30 0 - 24.24/0.663 27.59/0.889 29.01/0.889 31.69/0.946
o 37.48/0.984|38.82/0.987 38.20/0.985 38.22/0.986 39.41,/0.988
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4 Conclusions

This paper introduces TP-INR, an INR model designed for ultra-sparse view
CBCT reconstruction. TP-INR enhances both reconstruction accuracy and effi-
ciency through a specialized architecture that integrates prior-based structural
encoding, optimized network design, and adaptive ray-based training. By rapidly
generating target priors from projection data, it achieves voxel structural encod-
ing without the need for additional priors or pre-training, effectively addressing
the information deficit in practical ultra-sparse imaging. Extensive empirical
studies demonstrate that TP-INR surpasses existing methods in both quantita-
tive and qualitative evaluations, establishing it as a leading solution for sparse-
view CBCT reconstruction across various datasets and view configurations.
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