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Abstract. Medical image synthesis remains challenging due to misalign-
ment noise during training. Existing methods have attempted to address
this challenge by incorporating a registration-guided module. However,
these methods tend to overlook the task-specific constraints on the syn-
thetic and registration modules, which may cause the synthetic module
to still generate spatially aligned images with misaligned target images
during training, regardless of the registration module’s function. There-
fore, this paper proposes registration-guided consistency and incorpo-
rates disentanglement learning for medical image synthesis. The pro-
posed registration-guided consistency architecture fosters task-specificity
within the synthetic and registration modules by applying identical de-
formation fields before and after synthesis, while enforcing output con-
sistency through an alignment loss. Moreover, the synthetic module is
designed to possess the capability of disentangling anatomical structures
and specific styles across various modalities. An anatomy consistency loss
is introduced to further compel the synthetic module to preserve geomet-
rical integrity within latent spaces. Experiments conducted on both an in-
house abdominal CECT-CT dataset and a publicly available pelvic MR-
CT dataset have demonstrated the superiority of the proposed method.
The code is available at: https://github.com/pupuchuan/RegConDIS.

Keywords: Medical image synthesis · Registration-guided synthesis ·
Disentanglement learning

1 Introduction

Medical image synthesis can offer advantages by predicting a target imaging
modality in situations where acquisition is impractical due to time and cost
constraints [24, 25]. For example, MR-to-CT synthesis is a clinically signifi-
cant solution for MRI-only radiation therapy treatment planning [5, 26], and
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Fig. 1. The misaligned challenges in medical image synthesis. (a) Misaligned anatomi-
cal structures result in inaccurate mapping in supervised paradigms. (b) The previous
registration-guided synthesis [13] still retains misalignment-induced noise and suffers
from blurred boundaries due to the averaging effect.

CECT-to-CT synthesis is beneficial for reducing the registration errors between
contrast-enhanced CT (CECT) and CT, the additional exposure, and treatment
cost [16,21].

Existing medical image synthesis methods can be categorized into supervised
and unsupervised learning paradigms. In the supervised setting, source and tar-
get modalities are registered prior to training [4, 16, 26]. However, as shown
in Fig. 1(a), the standard image pre-processing steps cannot entirely eliminate
misaligned errors, particularly in anatomical areas like the abdomen or pelvis.
This misalignment can result in supervised methods learning inaccurate map-
pings [4,6,28,29]. Unsupervised methods alleviate the necessity of paired images.
Unfortunately, these methods cannot fully utilize retrospective images from the
same patient, and the performance of unsupervised synthesis methods is inferior
to supervised ones [5, 17, 27]. Therefore, better image quality may be obtained
by trying to solve the misalignment problem in the supervised paradigm.

Recent methods impose the registration-guided module to mitigate the mis-
alignment challenge [7,12,13,20,27–29]. For example, Kong et al. proposed Reg-
GAN to train the generator using an additional registration network to fit the
misaligned noise distribution adaptively for T1-to-T2 MR image synthesis [13].
Zhong et al. proposed quartet attention aware closed-loop learning (QACL)
framework for MR-to-CT synthesis via simultaneous registration [27]. Xin et
al. employ four aligners after synthesis module, with cycle-based consistency
across them [23]. However, these methods neglect the task-specific constraints
on synthetic and registration modules. Specifically, the synthetic module should
ideally preserve geometric properties, while the registration module should effec-
tively learn geometric transformations from images suffering from misalignment.
In medical image synthesis tasks, the design of the synthesis module is more com-
plex than that of the registration module. The absence of task-specific constraints
may cause the complex synthesis module to directly generate spatially misaligned
images during training, regardless of the function of the registration block [1].
In the testing phase, images synthesized solely using the synthetic network may
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still retain misalignment-induced noise and suffer from blurred boundaries due
to the averaging effect. (As shown in Fig. 1(b)).

Some methods also integrate disentanglement learning to address the chal-
lenge of misalignment [14,18]. These methods disentangle the anatomical struc-
tures and misalignment into distinct features in the latent spaces and synthesize
target images using only anatomical features. However, different styles between
modalities may also be falsely interpreted as motions, resulting in implausible
deformations [19,22]. Therefore, distinguishing the anatomy and the styles from
different modalities and constraining anatomical features to be consistent are
also beneficial for alleviating the misalignment problem.

In this study, we boost medical image synthesis via registration-guided con-
sistency and disentanglement learning. Unlike prior methods which neglect the
task-specific constraints in both synthetic and registration modules, our pro-
posed approach integrates a registration-guided consistency architecture along-
side an alignment loss, aiming at minimizing the difference between the images
synthesized before and after applying the same deformation field. Through that,
the synthetic network is encouraged to eliminate the influence of misalignment-
induced noise, under the presumption of consistent output across diverse de-
formed inputs. Furthermore, we propose an anatomy consistency disentangle-
ment synthetic module (ACDS) to decompose anatomical and style features.
The disentangled style features prove advantageous for the registration network
in discerning authentic deformations [19]. For the disentangled anatomical fea-
tures, we introduce an anatomy consistency loss to further mitigate the misalign-
ment issue within the latent space. Experimental validations conducted on both
an in-house abdominal CECT-CT dataset and a publicly available pelvic MR-
CT dataset demonstrate our method underscores the efficacy relative to several
synthetic approaches.

2 Method

Let S ⊂ RDS×HS×WS and T ⊂ RDT×HT×WT represent domains of source image
and target image, where D,H,W are the slice numbers, height, and weight. We
denote S = {Is ∈ S}Ns=1 and T = {It ∈ T }Nt=1 as paired image sets. Medical
image synthesis aims to learn a synthetic network G that maps the source image
Is to its target image Ot = G(Is). However, the inevitable misalignment between
S and T often results in inaccurate mapping. To address this challenge, we
propose a registration-guided consistency disentanglement learning method.

2.1 Registration-guided Consistency

A key challenge of registration-guided medical synthesis lies in delineating the
respective roles of the synthetic network and registration network. Specifically,
it’s crucial to avoid situations where the synthetic network ignores the function of
the registration network and directly synthesizes spatially aligned images during
training. To achieve this, we assume that the synthetic and registration processes
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Fig. 2. Overview of our proposed methods. (a) The registration-guided consistency
architecture. (b) The anatomy consistency disentanglement synthetic (ACDS) module.
(c) Testing phase for medical image synthesis.

are commutative and propose a registration-guided consistency structure (As
shown in Fig. 2(a)).

Registration-guided Module. The registration module is composed of a de-
formation generator RΦ and a re-sampler RS . RΦ is designed to take Is and It
as input, and produce a deformation field φ describing the non-rigid alignment
from Is to It:

φ = RΦ (Is, It) . (1)

RS receives the deformation field φ and applies it to an image desired to be
moved. We have adopted the architectural framework detailed in [3] as the foun-
dation of our registration module, and incorporated its smoothing loss to preserve
the smooth displacement of the deformable field:

Lsmooth (φ) = ES,T [‖∇φ‖2]. (2)

Synthesis Before Registration. Synthesis before registration first applies the
synthetic module G on Is, followed by the utilization of the re-sampler layer RS
on the synthesized image. This process yields the final output, which can be
formally expressed as:

Obt = RS (G (Is) , φ) . (3)
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Synthesis After Registration. In contrast, synthesis after registration first
applies the re-sampler layer RS on Is, followed by the utilization of the synthetic
module G on the warped image. This process yields the other final output, which
can be formally expressed as:

Oat = G (RS (Is, φ)) . (4)

Alignment Loss. In Eq.3 and Eq.4, the deformation field φ used in the re-
sampler RS is both given by the RΦ(Is, It) and designed to be the same. The sole
difference is that the synthetic module G accepts geometrically different images
as inputs (Is and RS(Is, φ)). Thus, if we assume that the synthetic and registra-
tion processes are commutative, which expect the same output from synthesis
before and after registration, the synthetic module G is required to be geometry
preserving and finally alleviate the misalignment issue. This assumption can be
easily realized by a simple alignment loss, which can be formulated as:

Lalign(G,R) =
∥∥Obt − It∥∥1 + ‖Oat − It‖1 . (5)

2.2 Anatomy Consistency Disentanglement Synthetic Module

Given that variations in styles across modalities may be falsely interpreted as
motions by the registration network [14], it is beneficial for the synthetic module
G to disentangle the specific style for each modality. Moreover, disentangling
anatomical structures and enforcing their consistency across identical content
images is important in mitigating misaligned noise. Therefore, we propose an
anatomy consistency disentanglement synthetic module.

Synthetic process. As shown in Fig. 2(b), the ACDS module is composed of
two content encoders {Esc , Etc}, two style encoders {Ess , Ets}, and two generators
{Gs, Gt}. The encoders in both domains respectively encode an input image
to an anatomical-invariant space and a modality-specific style space, and the
generators respectively combine the anatomical space features and style features
to synthesize images. This can be formulated as:

Ot = Gt(cs, st) = Gt(E
s
c (Is), E

t
s(dt)), (6)

Os = Gs(ct, ss) = Gs(E
t
c(It), E

s
s(ds)), (7)

where Ot and Os denote the synthetic images, dt and ds denote the learned
domain code, which is empirically set as an 8-bit vector. The content encoder
consists of 3 Conv-IN-ReLU blocks with kernel sizes of 3, strides of 2, channels
of 32, 64, 128, followed by 4 residual blocks. The style encoder consists of 3 MLP
layers.
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Disentanglement Learning. Inspired by [8, 15], the synthetic module real-
izes disentanglement via generative adversarial loss, self-reconstruction loss, and
cycle-consistency loss. We define them as follows:

Ladv = ET [logDt(It)] + ES [1− logDt(Ot)]

+ ES [logDs(Is)] + ET [1− logDs(Os)],
(8)

Lself = ‖Gs (Esc (Is), Ess(ds))− Is‖1 +
∥∥Gt (Etc(It), Ets(dt))− It∥∥1 , (9)

Lcycle =
∥∥Gs (Etc(Ot), Ess(ds))− Is∥∥1 + ∥∥Gt (Esc (Os), Ets(dt))− It∥∥1 , (10)

where Dt and Ds represent the discriminators. If the encoders can successfully
disentangle the anatomical content from images and the generators uphold ge-
ometric fidelity, anatomical content features should be identical. Therefore, we
propose an anatomy consistency loss:

Lanatomy =
∥∥Etc(Ot)− Esc (Is)∥∥1 + ∥∥Esc (Os)− Etc(It)∥∥1 . (11)

The implementation of the anatomy consistency loss necessitates the ACDS
module to further learn and retain anatomical structure information in the latent
space. Then, the overall loss function is:

Ltotal = Ladv + Lself + Lcycle + λ1Lanatomy + λ2Lsmooth + λ3Lalign, (12)

where λ is the hyperparameter. As shown in Fig. 2(c), after training, only Esc ,
Ets and Gt are required to translate the source image into target image in the
testing phase.

3 Experiments

3.1 Experimental Setup.

Datasets. We evaluated our methods on an in-house abdominal CECT-CT
dataset and a publicly available pelvic MR-CT derived from the SynthRAD2023
Grand Challenge dataset [9]. The CECT-CT dataset comprised 278 patients
diagnosed with liver cancer. Preprocessing of images involved sequential imple-
mentation of affine spatial normalization [11] and nonlinear registration tech-
niques [2]. For evaluation, we manually selected 15 well-aligned subjects for the
validation set and 40 well-aligned subjects for the test set. The pelvic MR-CT
dataset consists of 180 patients. Similarly, the validation set comprised 6 aligned
subjects, while the test set included 30 appropriately aligned subjects.

Implementation Details Our method was implemented with PyTorch, using
2 NVIDIA RTX3090 GPUs. The hyperparameter λ1, λ2, λ3 were set as 0.5, 10
and 20. For the anatomy consistency disentanglement synthetic module, we used
a similar structure as [8] and changed it into 3D. We employed Adam optimizer
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Table 1. Quantitative comparison of different methods on the CECT-to-CT synthesis
and MR-to-CT synthesis. All p-values from the paired samples t-test are below 0.05.

Methods CECT-to-CT Synthesis MR-to-CT Synthesis
MAE (HU) ↓ PSNR (dB) ↑ SSIM (%) ↑ MAE (HU) ↓ PSNR (dB) ↑ SSIM (%) ↑

Pix2pix [10] 21.70 ± 1.40 34.89 ± 1.43 87.78 ± 3.02 50.64 ± 4.47 30.61 ± 0.85 82.82 ± 2.14
CycleGAN [30] 22.51 ± 1.78 34.33 ± 1.12 88.14 ± 2.78 82.24 ± 11.42 27.45 ± 0.79 70.79 ± 6.51
UNIT [15] 22.78 ± 1.80 34.04 ± 1.06 88.10 ± 2.78 84.49 ± 11.95 27.80 ± 0.88 70.44 ± 6.22
RegGAN [13] 21.29 ± 1.86 35.10 ± 1.27 88.15 ± 2.84 50.22 ± 3.60 30.44 ± 0.53 83.16 ± 1.92
ResViT [4] 20.79 ± 2.09 35.14 ± 1.41 88.20 ± 2.89 49.90 ± 3.43 30.72 ± 0.60 82.91 ± 2.07
Diffusion [6] 20.33 ± 2.10 35.42 ± 1.52 88.71 ± 2.86 49.65 ± 4.00 30.47 ± 0.72 83.38 ± 2.00
Ours 16.38 ± 1.83 36.52 ± 1.66 89.22 ± 2.83 47.47 ± 4.59 30.86 ± 0.88 83.70 ± 2.47

with a poly decay strategy, a batch size of 2, and a maximum of 200 epochs to
dynamically adjust the learning rate from 2 × 10−4. To evaluate the efficacy of
the proposed model, we employed three standard evaluation metrics: the mean
absolute error (MAE), the structural similarity index measurement (SSIM), and
the peak signal-to-noise ratio (PSNR).

3.2 Results

Comparisons with State-of-the-Art. We compared our method with several
synthesis methods including supervised methods such as Pix2pix [10], ResViT
[4], diffusion model [6], unsupervised methods such as CycleGAN [30], disen-
tanglement methods such as UNIT [15], and registration-guided method such as
RegGAN [13]. To ensure a fair comparison, we converted all these methods to 3D
models. As illustrated in Table 1, our proposed method demonstrates superior
performance, exhibiting a MAE of 16.38 ± 1.83 HU, a PSNR of 36.52 ± 1.66
dB and an SSIM of 89.22 ± 2.83 % for CECT-to-CT synthesis, and an MAE of
47.47 ± 4.59 HU, a PSNR of 30.86 ± 0.88 dB and a SSIM of 83.70 ± 2.47 % for
MR-to-CT synthesis. Fig. 3 and Fig. 4 show the visual results. The pink boxes
show the structural details where misalignment are often encountered during
training. The supervised and previous registration-guided methods still retain
misalignment noise and have blurred boundaries due to the averaging effect. In
contrast, our methods preserve anatomical consistency and clear boundaries in
the regions where misalignment is often encountered during training.

Ablation Study. An ablation study was undertaken to assess the efficacy of the
registration-guided consistency and ACDS module. Table 2 shows the results ob-
tained from the validation set for both CECT-to-CT and MR-to-CT tasks. The
third row in Table 2 demonstrates that the registration-guided consistency de-
sign yields a reduction of 2-3 HU in the MAE compared with synthesis before
registration in both tasks. The results in the fourth row also indicate the integra-
tion of the ACDS module facilitates an enhancement in the quality of synthesis.
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Fig. 3. Visual comparison of synthesized results on CECT-CT dataset.

Fig. 4. Visual comparison of synthesized results on MR-CT dataset.

Table 2. Ablation study of critical components of the proposed method. AFT rep-
resents synthesis after registration branch, BEF represents synthesis after registration
branch, and ACDS represents anatomy consistency disentanglement synthetic module.

Component CECT-to-CT Synthesis MR-to-CT Synthesis
AFT BEF ACDS MAE (HU) ↓ PSNR (dB) ↑ SSIM (%) ↑ MAE (HU) ↓ PSNR (dB) ↑ SSIM (%) ↑

• ◦ ◦ 28.84 ± 2.70 33.49 ± 1.07 85.30 ± 3.06 86.84 ± 11.23 27.61 ± 1.01 69.74 ± 2.30
◦ • ◦ 21.56 ± 1.49 34.65 ± 1.03 87.22 ± 3.11 55.59 ± 3.33 29.65 ± 0.31 81.74 ± 1.59
• • ◦ 19.43 ± 1.84 35.30 ± 1.09 87.47 ± 3.12 53.48 ± 6.56 30.12 ± 0.65 81.98 ± 1.52
• • • 16.96 ± 1.92 35.64 ± 1.34 88.27 ± 3.16 52.68 ± 5.01 30.18 ± 0.35 82.20 ± 1.40
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4 Conclusion

This paper introduces a registration-guided consistency architecture and an
ACDS module to address the misalignment issue for medical image synthesis.
The proposed registration-guided consistency design customizes the registration
and synthetic module to be task-specific and encourages the synthetic module
to eliminate the influence of misalignment-induced noise. Additionally, disen-
tanglement learning and an anatomy consistency loss are applied to the ACDS,
enhancing its ability to preserve geometric integrity, thus further avoiding the
misalignment issue. Experimental results have demonstrated the superiority of
the proposed method.
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