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Abstract. Parameter Efficient Fine-Tuning (PEFT) methods have been
widely used to adapt foundation models like the Segment Anything
Model (SAM) for better generalization in unseen domains. Despite their
widespread use, PEFT often suffers from overfitting to the source train-
ing domain, which limits their generalization performance. To address
this limitation, we propose a novel subspace regularization (SR) method
for robust fine-tuning. Our approach iteratively removes the knowledge
of task-specific directions, as identified by LoRA parameters learned from
the source domain, from the subspace of pre-trained weights. This strat-
egy effectively encourages the LoRA parameters to acquire a more di-
verse range of knowledge. In addition, we introduce an exponential mov-
ing average (EMA) LoRA module that aggregates historical updates of
the LoRA parameters throughout the fine-tuning process. This aggrega-
tion enhances stability and the generalizability of the learned features
by smoothing the trajectory of parameter updates. Our enhanced frame-
work, SR-SAM, incorporates both subspace regularization and the EMA
LoRA module to fine-tune the popular SAM model effectively. Exper-
imental results on two widely used domain generalization benchmarks
demonstrate that SR-SAM outperforms existing state-of-the-art meth-
ods, underscoring the effectiveness of our method. The source code is
available at https://github.com/xjiangmed/SR-SAM.

Keywords: Parameter-efficient fine-tuning · Domain generalization ·
Segment Anything Model.

1 Introduction

Variations in imaging protocols and scanners across different institutions often
lead to domain shifts in medical images, causing performance degradation in
deep learning models and hindering their practical deployment. Domain gener-
alization (DG) techniques address this challenge by enabling models to gener-
alize from known source domains to unknown target domains. Traditional DG
methods [18,9,32,4] primarily focus on extracting domain-invariant features or
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designing various style transformations to augment source domain images. How-
ever, the data-driven nature of deep learning suggests that training generalized
models on large-scale, diverse datasets might be a more straightforward and ef-
fective strategy compared to these complex DG methods. Recent advancements
in foundation models, such as the Segment Anything model (SAM)[12], which
is trained on over one billion masks, have shown outstanding zero-shot perfor-
mance. Nonetheless, due to the substantial domain gap between medical images
and natural images, SAM requires fine-tuning in medical scenarios to fully un-
leash its capabilities. The workflow of recent DG methods [5,24] has gradually
shifted to using a pre-trained model as initialization, then fine-tuning it through
one or more source domains, and finally evaluating the generalization perfor-
mance on target domains different from the source domains.

To tailor SAM’s capabilities for various domains in specific medical down-
stream tasks, it is crucial to apply appropriate fine-tuning methods. Two com-
mon adaptation techniques include full fine-tuning and only fine-tuning the
mask decoder [16,5,21]. However, full fine-tuning is storage-intensive, and train-
ing only the mask decoder leads to poor adaptation performance. Parameter-
Efficient Fine-Tuning (PEFT) [7,6,11] methods address these limitations by
freezing the pretrained model and optimizing lightweight trainable modules,
significantly reducing training costs. This benefit has popularized PEFT and
driven the development of various PEFT approaches to adapt SAM for down-
stream tasks [25,24,29,3]. Low-Rank Adaptation (LoRA) [7] stands out as a
widely adopted PEFT method, injecting trainable low-rank decomposition ma-
trices into specific layers of the transformer architecture. We observed that ap-
plying LoRA to fine-tune the SAM yields superior generalization performance
on out-of-distribution (OOD) domains compared to conventional DG methods.

In this work, we address a more challenging and realistic scenario, single-
source domain generalization, in which only one source domain is available at
training. This demanding scenario necessitates that the model learns new knowl-
edge from limited source data while simultaneously achieving effective general-
ization across diverse domains. Despite its notable advantages, employing LoRA
in domain generalization scenarios presents certain challenges. A primary chal-
lenge is the tendency of LoRA modules to overfit to the training source domain,
a phenomenon that becomes particularly pronounced when training on smaller
datasets. While LoRA facilitates task-specific adaptation, it also heightens the
risk of incorporating source domain-specific noise or biases into the model. More-
over, a single low-rank module often lacks the necessary stability and robustness
to handle the variability encountered in diverse, unseen target domains.

To mitigate the overfitting problem, we analyzed the subspace similarities of
LoRA parameters across different domains and discovered that domain shifts di-
minish the alignment of top singular directions. Based on this insight, we propose
a subspace regularization method called SR-SAM, which enhances robust fine-
tuning by regulating the subspace of the pre-trained model. Utilizing the task-
specific update directions of the source domain discovered by the LoRA mod-
ule, we iteratively truncate the corresponding knowledge from the pre-trained
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Fig. 1. Framework of SR-SAM: (a) We insert a set of LoRA and EMA LoRA modules
in the query and value layers of each transformer block in the image encoder. The
subspace regularization involves two main steps: (b) projecting the EMA LoRA weight
onto the subspace of pretrained weight to discern the top s TSDs; (c) removing the
TSDs components from the pretrained weights.

weights. This approach effectively broadens the diversity and scope of LoRA’s
update directions, mitigating overfitting to the source domain. Furthermore, to
ensure robust generalization across different OOD domains, we employ two sets
of low-rank adapters: a standard LoRA adapter for learning task-specific infor-
mation, and an exponential moving average (EMA) LoRA adapter designed to
capture a more stable and generalizable representation through temporal en-
sembles. The results on two DG benchmarks show that SR-SAM consistently
outperforms both traditional DG methods and SAM-based fine-tuning methods.

2 Method

The single-source DG task involves training on a single source domain Ds =
{xk

s , y
k
s }

Ns

k=1, where xk
s and yks denote the source image and corresponding ground

truth mask. We evaluate the generalization performance on OOD target domains
Dt = {D1

t , D
2
t , ..., D

T
t }. Our baseline model follows the SAMed [29] setup, with

the image and prompt encoders frozen and the mask decoder fully trainable. We
insert the trainable LoRA module into each transformer block of the image en-
coder to fine-tune SAM. Fig. 1 gives an overview of our proposed method. In this
section, we first review LoRA and explore the correlation of LoRA parameters
across domains, and then detail the SR-SAM components.

2.1 Preliminary

LoRA. Based on the observation that the updated weights typically have low
intrinsic rank [13], for a pretrained weight matrice W ∈ Rn×m, the LoRA [7]
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(a) Domain A-Domain A (b) Domain A-Domain E (c) Domain A-Domain F (e) Subspace Regularization

(d) Projection 

Fig. 2. Normalized subspace similarity is measured (a) between two randomly seeded
runs for domain A, and (b) between domain A and E, as well as (c) between domain A
and F of the Prostate dataset [15]; the second-row zooms in on the upper left corner of
the first-row. (d) Visualization of projecting EMA LoRA weight ∆W̃ to the subspace
of pre-trained weight W . (e) Illustration depicting the concept behind our subspace
regularization approach.

method models the change of the model as ∆W = AB, where A ∈ Rn×r and
B ∈ Rr×m with the rank of r. During training, only the injected low-rank weights
A and B are updated, with W remaining frozen. A forward pass for LoRA is
represented as h = Wx+∆Wx = (W +AB)x.

Pretrained weight W can be seen as a matrix in a subspace spanned by a
set of linearly independent bases {uiv

T
i }, where ui and vi are the left and right

singular vectors of W obtained by SVD. Each singular value σi corresponds to
a direction in the subspace. LoRA emphasizes that ∆W enhances some direc-
tions in W that are not critical for pre-training but are essential for specific
downstream tasks, which LoRA calls “task-specific directions” (TSDs). TSDs re-
fer to the directions in which model parameters need to be adjusted during the
adaptation process, transitioning from the pre-trained state W to the optimal
parameters W ∗ for a specific downstream task. LoRA-Dash [20] considers these
directions as an intuitive representation of low-dimensional manifolds, highlight-
ing the importance of task-specific directions for successful fine-tuning. However,
despite the importance of these directions pointed out by LoRA and LoRA-Dash,
the exploitation of TSDs remains unexplored in the DG task.

Subspace similarity. Inspired by previous work [7,20,22], LoRA’s parameters
serve as holders for distinct subspaces of task gradients. For the DG task, a
natural question arises: What is the connection between the LoRA weight ∆W
of different domains? To answer this question, we fine-tune SAM via LoRA on
different domains and then examine the subspace similarity [7] between ∆W in
different domains. We measure the subspace similarity based on the Grassmann
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distance:

ϕ(∆W1, ∆W2, i, j) =
||U iT

∆W1U
j
∆W2||2F

min(i, j)
∈ [0, 1], (1)

where U i
∆W1 represents the top-i left-singular vectors of ∆W1. Greater values

of ϕ(·) indicate a larger overlap of the subspaces.
In Fig. 2 (a-c), we analyze the subspace similarity of LoRA parameters be-

tween two seeds within the same domain and across different domains. We can
draw two observations from Fig. 2: (1) There is a substantial overlap in the direc-
tions of the top singular vectors when comparing runs within the same domain,
indicating that these directions are crucial for capturing task-specific knowledge.
Meanwhile, the less significant singular vectors may primarily capture noise. (2)
Comparing across domains, the overlap in the top singular vector directions is
notably reduced, suggesting that while there are inherent similarities in these
essential directions, domain shifts diminish their congruence.

Motivated by these findings, we introduce a novel subspace regularization
(SR) strategy specifically designed to reduce overfitting and bias during training
on in-distribution source data. As shown in Fig. 2 (e), this strategy involves
identifying the task-specific directions (TSDs) of the source training data and
iteratively removing these directions from the pre-trained model. In this way,
we limit LoRA’s excessive updates along these critical TSDs, thereby enabling
a broader exploration of the optimization subspace.

2.2 Subspace Regularization

Our subspace regularization strategy consists of two steps, TSD identification
and TSD-based truncation.
TSD Identification. In LoRA-Dash [20], TSDs are defined as the core di-
rections of the pre-trained weight matrix W that undergo the largest relative
changes when transitioning to W ∗ for a specific downstream task. Since both
the optimal weight W ∗ and the optimal weight change ∆W ∗ are unknown before
fine-tuning, LoRA-Dash uses the parameters learned by LoRA as an estimate
of ∆W ∗. Following this approach, we first train low-rank matrices (A and B)
for a predefined number of steps t. Then we project the learned weight changes
∆W onto the core bases of W . As shown in Fig. 2 (d), the projection of ∆W
indicates the direction in which W needs to evolve. uT

i ∆Wvi denotes the projec-
tion operation. Subsequently, the top s directions exhibiting the highest change
rates are identified as the TSDs. The change rate δi for each core direction σi is
calculated as follows:

δi =
uT
i ∆Wvi
σi + ϵ

, (2)

where ui and vi are the i-th left and right singular vectors of W , and σi is the
corresponding singular value. ϵ is a small constant to avoid division by zero.
TSD-based Truncation. Contrary to enhancing focus on TSDs as in LoRA-
Dash, our strategy restricts updates along these directions by modifying the base
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model W . Specifically, we truncate the subspace corresponding to the TSDs,
recalibrating W to:

W ′ =

min(n,m)∑
i=1,i/∈TSDs

uiσiv
T
i , (3)

where W ′ becomes the new weight matrix. We iteratively (i.e., every t steps)
identify TSDs and remove these top-direction subspaces from the pre-trained
weight. This truncation encourages learning from other, less dominant direc-
tions of downstream tasks, thereby preventing overfitting to the source domain
and fostering better generalization against OOD domains. Notably, the trun-
cation operation does not lose essential information. TSDs are typically minor
singular value components in the pre-trained weight [20]. Additionally, prior to
truncation, LoRA has already amplified and updated the truncated knowledge.
Temporal Ensemble. Capitalizing on ensembling’s strengths to improve gen-
eralization over diverse distributions [14], we devise a temporal ensemble method
within the LoRA framework called EMA LoRA. This approach leverages tempo-
ral aggregation by accumulating historical LoRA weights during training, gaining
a wider comprehension of the feature space. The accumulated weights ∆Ã,∆B̃
are updated as ∆Ã = α∆Ã+ (1− α)∆A and ∆B̃ = α∆B̃ + (1− α)∆B , where
α ∈[0,1] is the update rate. To enhance the accuracy of TSD identification, we
project the EMA LoRA weight ∆W̃ = ∆Ã∆B̃ onto the subspace of W to iden-
tify the TSDs. Additionally, by acting as a teacher model, EMA LoRA guides
the training of the LoRA student model using a distillation loss defined as

Ldistill =
1

N

∑
n∈N

KL(p̃n||pn), (4)

where KL(·) denotes the Kullback-Leibler divergence, p̃n and pn represent the
predicted probabilities of the n-th pixel from the teacher and student models,
respectively. This distillation mechanism enhances the LoRA’s ability to gen-
eralize by learning robust predictions from the EMA LoRA. The final training
object is L = Lseg + λLdistill, where Lseg is a combination of cross entropy loss
and dice loss.

3 Experiments

Datasets. Our method is evaluated on two cross-domain segmentation datasets:
(1) Prostate dataset [15]: consists of MRI images from six sources: Domain
A: RUNMC, B: BMC, C: I2CVB, D: UCL, E: BIDMC, and F: HK. All MRI
images are resampled to a uniform spacing and resized to 384 x 384. The number
of slices in each domain is 261, 384, 158, 468, 421, and 175, respectively. (2)
Polyp dataset [31]: consists of images from Domain A: CVC-ClinicDB, B:
CVC-ColonDB, C: ETIS, and D: Kvasir, with totals of 612, 380, 196, and 1,000
images respectively. The images are resized to 384 x 384.
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Table 1. Comparison of Dice scores between our SR-SAM with SOTA methods on the
polyp dataset.

Method Model A B C D Average

Upper bound [19] U-Net 95.26 94.21 93.07 96.31 94.71

CutMix [27]

U-Net

50.72 45.42 58.17 69.12 55.86
Mixup [28] 59.37 41.57 60.17 71.25 58.09
BigAug [30] 56.79 42.10 60.26 69.56 57.18
Randaugment [4] 59.11 50.41 58.78 66.73 58.76
MCC [23] 67.88 48.38 59.74 63.89 59.98
RGIA [31] 64.64 47.74 61.73 69.17 60.82

DeSAM [5][whole]
Decoder

51.73 44.39 50.55 31.53 44.55
DeSAM [5][grid] 51.39 44.47 52.34 31.50 44.93
SAM4Med [21] 48.38 64.31 57.35 66.70 59.19

Med-SA [25] Adapter 82.81 78.75 80.81 79.88 80.56
DAPSAM [24] 82.26 78.49 79.63 78.76 79.79

SAMed [29]

LoRA

82.46 79.54 79.68 79.38 80.27
H-SAM [3] 82.08 78.82 80.56 79.74 80.30
PACE [17] 81.16 79.77 79.79 78.14 79.72
PEGO [8] 82.18 80.28 80.76 79.33 80.64
LoRA-Dash [3] 81.68 79.91 80.77 79.76 80.53

SR-SAM (Ours) LoRA 82.83 81.23 81.21 80.57 81.46

Implementations. All SAM-based methods use the ViT-B backbone. Our ex-
periments are conducted on an NVIDIA RTX3090 GPU, with the training pro-
cess spanning 160 epochs. The initial learning rate is configured to 5e-4, the
batch size is set to 8, and the weight decay for the AdamW optimizer is 0.1. A
warm-up period of 250 iterations is implemented. The Dice Similarity Coefficient
is used as the evaluation metric. For optimal baseline performance, the rank of
LoRA is configured to 64. The weight λ is set to 1e-7 and 1e-6 for the polyp and
prostate dataset. The EMA rate α is 0.999. TSD identification and truncation
are performed every 4 epochs, with the truncation size fixed at 96.
Comparison with SOTA Methods. We compare SR-SAM with traditional
CNN-based DG methods and SAM-based methods, with results shown in Ta-
ble 1 and Table 2 for polyp and prostate datasets. SAM-based methods are
categorized into: 1) Decoder-based: DeSAM decouples prompt encoding and
mask prediction, while SAM4Med introduces an automatic prompt generator.
2) Adapter-based PEFT: Med-SA utilizes Adapter [6] structures, and DAPSAM
introduces domain-adaptive prompts. 3) LoRA-based PEFT, with SAMed using
LoRA structures, H-SAM enhancing hierarchical decoding and LoRA-Dash max-
imizing the impact of TSDs. Additionally, PACE and PEGO enhance generaliza-
tion through consistency and orthogonal regularization, respectively. Compared
to traditional DG methods, most SAM-based approaches demonstrate superior
generalization performance. Adapter-based and LoRA-based PEFT methods ex-
hibit superior performance compared to decoder-based approaches. Notably, SR-
SAM surpasses both the leading CNN-based methods and recent SAM-based
techniques on both datasets. Specifically, on the polyp dataset, SR-SAM achieved
the best performance in all four domains and achieved a 0.82% improvement in
average dice compared with the PEGO method. On the prostate dataset, SR-
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Table 2. Comparison of Dice scores between our SR-SAM with SOTA methods on the
prostate dataset.

Method Type A B C D E F Average

Upper bound [10] U-Net 85.38 83.68 82.15 85.21 87.04 84.29 84.63

AdvBias [2]

U-Net

77.45 62.12 51.09 70.20 51.12 50.69 60.45
RandConv [26] 75.52 57.23 44.21 61.27 49.98 54.21 57.07
MixStyle [32] 73.04 59.29 43.00 62.17 53.12 50.03 56.78
MaxStyle [1] 81.25 70.27 62.09 58.18 70.04 67.77 68.27
CSDG [18] 80.72 68.00 59.78 72.40 68.67 70.78 70.06
CCSDG [9] 80.62 69.52 65.18 67.89 58.99 63.27 67.58

DeSAM [5][whole]
Decoder

82.30 78.06 66.65 82.87 77.58 79.05 77.75
DeSAM [5][grid] 82.80 80.61 64.77 83.41 80.36 82.17 79.02
SAM4Med [21] 84.08 77.29 73.98 82.40 80.47 79.04 79.54

Med-SA [25]
Adapter

84.46 83.06 68.23 85.82 83.69 80.10 80.89
DAPSAM [24] 86.34 81.05 70.81 85.28 82.91 81.48 81.31

SAMed [29]

LoRA

85.07 82.02 75.16 85.81 82.87 81.53 82.08
H-SAM [3] 85.63 83.34 76.71 84.44 83.17 81.94 82.54
PACE [17] 85.07 83.33 71.55 85.47 84.42 81.93 81.96
PEGO [8] 84.19 81.10 74.88 83.88 83.67 81.17 81.48
LoRA-Dash [3] 84.81 82.60 74.63 85.37 82.67 81.63 81.95

SR-SAM (Ours) LoRA 87.07 83.06 77.95 86.91 84.51 82.36 83.64

Table 3. Ablation of different components.

Baseline EMA Trun A B C D Average

✓ 82.46 79.54 79.68 79.38 80.27
✓ ✓ 82.45 80.01 80.38 79.48 80.58
✓ ✓ ✓ 82.83 81.23 81.21 80.57 81.46

Table 4. Effect of truncation size.

Size A B C D Average

8 82.74 80.43 80.21 79.77 80.79
16 82.68 80.50 80.97 80.09 81.06
32 82.61 80.28 80.52 79.99 80.85
64 83.03 80.91 81.27 79.85 81.27
96 82.83 81.23 81.21 80.57 81.46
128 82.43 80.30 80.82 79.81 80.84

SAM outperforms the H-SAM method by 1.1% in average dice. We consistently
deliver state-of-the-art results across most domains in both datasets, showcasing
robust generalization capabilities. It is worth noting that our subspace regular-
ization method significantly outperforms the PEGO method [8], which enforces
orthogonal regularization between multiple, specifically four LoRA modules to
encourage LoRA to learn diverse knowledge. Compared with LoRA-Dash [3],
which enhances learning in the TSDs, our subspace regularization weakens learn-
ing in the TSDs of the source domain, showing superior performance.
Effect of different components. We conduct ablation experiments on the
components of SR-SAM including EMA LoRA (EMA) and TSD Truncation
(Trun) on the polyp dataset. The results, as shown in Table 3, reveal that both
modules contribute to the performance improvement of the SR-SAM. Compared
to the baseline, our method shows consistent superiority, with an average im-
provement of 1.19% dice.
Effect of truncation size. We analyze the influence of truncation size s on
polyp dataset in Table 4. While increasing s allows for learning a broader range
of knowledge, overly large values may remove essential pretrained information.
We observe that the model performs best with a truncation size of 96.
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4 Conclusion

In this paper, we propose to enhance the generalization ability of SAM on DG
tasks from a new perspective of subspace regularization. We establish two sets
of LoRA adapters, enabling the identification of the update direction of the
source domain. By iteratively removing task-specific knowledge from the pre-
training model, we constrain the LoRA adapters to acquire more comprehensive
and diverse knowledge representations. Our experimental results validate the
effectiveness of subspace regularization, highlighting the benefits of appropriate
utilization of TSD in achieving excellent generalization performance.
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