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Abstract. Resting-state functional MRI (rs-fMRI) has been increas-
ingly employed to aid in brain disorder diagnosis and reveal the patho-
logical mechanisms underlying neurological diseases. However, clinical
applications of current automated diagnosing techniques remain con-
strained by the complexity of brain topology structures and the high
costs associated with expert-derived biomarkers. Recent advancements in
research have shown that Graph Contrastive Learning (GCL) holds sub-
stantial potential for overcoming these challenges and improving diagno-
sis accuracy. Nevertheless, existing GCL-based methods predominantly
generate a static augmented brain network during graph augmentation
and primarily focus on the semantic differences between the original
and augmented views. To address above issues, we introduce MGCL-
DA (Multi-view Graph Contrastive Learning with Dynamic Self-aware
and Cross-sample Topology Augmentation), a novel framework aimed
at generating two complementary augmentations of brain networks that
account for both individual-specific and inter-subject functional het-
erogeneity, as well as dynamically regulating the update of augmented
views to optimize the transmission of discriminative features. Further-
more, we incorporate multi-view graph contrastive learning with min-
max constraints, applying distinct contrastive constraints based on spe-
cific augmentation semantics to enable pairwise comparisons between
the original network and its two augmented views. Extensive experi-
ments on the MDD dataset demonstrate the superior classification per-
formance of MGCL-DA over several state-of-the-arts. Code is available
at https://github.com/goodcodingagoodboy/MGCL-DA.

Keywords: Multi-view graph contrastive learning · Dynamic graph topol-
ogy augmentation · Resting-state functional MRI · Brain disorder.
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1 Introduction

Resting-state functional MRI (rs-fMRI) [4, 15] has been increasingly employed
to aid in disorder diagnosis and reveal the pathological mechanisms. Conditions
such as major depressive disorder (MDD) [6, 25] pose a range of significant chal-
lenges related to brain development and function. However, the clinical applica-
tions of current techniques are still limited by the complexity of brain topology
structures and the high costs associated with expert-derived biomarkers [7].

Recently, Graph Contrastive Learning (GCL) has demonstrated significant
potential in enhancing the exploration of brain topology structure and clinical
model generalization, particularly in scenarios with limited labeled data [7, 17].
Nevertheless, its application in brain disorder diagnosis remains relatively unex-
plored. Existing contrastive methods predominantly generate a static augmented
brain network during graph augmentation [13, 23], which overlooks their dynamic
adjustment capabilities and hinders the model’s ability to capture the complex
and evolving nature of brain networks over time or under different conditions [16].
Furthermore, conventional multi-view contrastive learning is typically restricted
to capturing differences between the original view and the augmented views [9,
17, 23], neglecting the interrelationships among augmented views and essential
semantic information relevant to specific application contexts. This limitation
leads to the omission of certain critical feature representations.
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Fig. 1. Illustration of proposed MGCL-DA and significant components.

To address these challenges, we introduce MGCL-DA (Multi-view Graph
Contrastive Learning with Dynamic Self-aware and Cross-sample Topology Aug-
mentation), a novel framework designed to advance the automated diagnosis of
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brain disorders. As illustrated in Fig. 1, the main contributions of proposed
MGCL-DA framework can be summarized as follows: (1) We develop a dynamic
self-aware and cross-sample topology augmentation to iteratively regulate the
dynamic update of augmented views and generate two complementary brain
network views that account for both individual-specific and inter-subject func-
tional heterogeneity. (2) Multi-view graph contrastive learning with min-max
constraints is further proposed, applying distinct contrastive constraints based
on specific augmentation semantics to enable pairwise comparisons between the
original network and its two augmented views. (3) Extensive experiments on
the MDD dataset collected from two hospitals demonstrate that our MGCL-DA
has superior classification performance than existing state-of-the-arts methods.
Additionally, ablation studies and parameter analysis confirm the effectiveness
of proposed dynamic update mechanism and multi-view contrastive constraints.

2 Methodology

As shown in Fig. 1(a), the proposed MGCL-DA framework consists of three
parts: (1) brain network construction, (2) dynamic self-aware and cross-sample
topology augmentation, and (3) multi-view graph contrastive learning, with de-
tails introduced below.

2.1 Brain Network Construction

In this study, we employ rs-fMRI to construct an undirected spatio-temporal
brain network G and its corresponding functional connectivity matrix A.

For each subject, blood-oxygen-level-dependent (BOLD) signals from rs-
fMRI represent an undirected spatio-temporal network G = (V,E) ∈ RT×N .
The vertex set V = {vti | t = 1, . . . T ; i = 1, . . . , N} includes each ROI (region of
interest) at every time point t, where T denotes the number of time points during
scanning, and N is the number of brain regions. The edge set E contains two
subsets [3]: (1): ER = {(vti, vtj)}, representing the set of connections between
the i-th and j-th ROIs at the same time point t. (2): ET = {(vti, vt+1,i)}, repre-
senting the connections between consecutive time points for the same i-th ROI.
This approach allows the undirected spatio-temporal network G of each subject
to express topology expressions from both spatial and temporal dimensions [10].

Subsequently, the functional connectivity matrix A ∈ RN×N is generated by
computing the Pearson correlation coefficient for all ROIs at each time point,
aiming to identify ROIs with dysregulation in patients with brain disorders.

2.2 Dynamic Self-aware and Cross-sample Topology Augmentation

To fully leverage the topology structure of the brain network and regulate the
transmission of discriminative information in augmented views, we propose a
dynamic self-aware and cross-sample topology augmentation to generate two
complementary augmentations of brain network for both individual-specific and
inter-subject functional heterogeneity [24].
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Self-aware and Cross-sample Topology Augmentation. Considering the
effect of sample sizes in graph topology augmentation, we extend the brain net-
work G and A into three dimensions, represented as RB×T×N and RB×N×N .

As for self-aware augmentation, first, the input G is fed into Z-pool layer[12],
producing the Gz. The transformation equation for the Z-pool layer is given by:

Gz = Z-pool(G) = MaxPool(G)⊕ AvgPool(G)

=

[
max
b∈R

(Gb,T,N )⊕ 1

|R|
∑
b∈R

Gb,T,N

]
(1)

where Gb,T,N denotes the b-th subject brain network and R represents the lo-
cal neighborhood in the spatio-temporal domain, with size |R|. MaxPool selects
the most prominent edges in the brain network, amplifying core functional con-
nections while reducing noise and redundancy. In contrast, AvgPool smooths
the network by averaging functional connections, weakening less important ones
while preserving the network’s overall topology. The operation ⊕ merges promi-
nent features with the overall network structure. Next, the Spatio-temporal GC
encoder, consisting of spatial and temporal two components, encodes Gz to cap-
ture the spatial structure and temporal dynamics of brain connectivity, which
operations are consistent with the module proposed by Fang et al [2]. After the
above operations, we obtain the self-aware augmentation GSA, which represents
an augmented brain network that captures the self-specific topological structure.

For cross-sample augmentation, the procedure follows the same steps as de-
scribed previously. The only difference is that, before inputting, G is rotated
separately along the spatial N and temporal T axes and finally obtain two out-
puts, G2,s and G3,t. Then, we employ an equally weighted averaging approach to
fuse two augmented views, yielding GCA by leveraging inter-sample variability.

Dynamic Augmentation Update Mechanism. To dynamically update aug-
mented views over multiple iterations, we introduce a dynamic augmentation
update mechanism. At iteration t-th, the augmented brain networks GSA

t , GCA
t

are updated from the previously (t− 1)-th representation, as expressed below:

GSA
t = (1− ωt) ·GSA

t−1 + ωt ·GSA
t GCA

t = (1− ωt) ·GCA
t−1 + ωt ·GCA

t (2)

where, ωt is a dynamically adjusted weight factor, which plays a significant role in
balancing the fusion of discriminative information contained in two consecutive
augmented views. Meanwhile, it is uniformly shared among all subjects within
the same iteration for two topology augmentation, but dynamically varies across
iterations. Specifically, the implementation of ωt is provided as follows:

ωt = ωmin + (ωmax − ωmin) · σ[
1

2
(
Lt − Lt−1

Lt−1
+

ACCt −ACCt−1

ACCt−1
)] (3)

where L is the objective loss function of MGCL-DA and ACC is the training
accuracy for MDD classification. When the model exhibits suboptimal perfor-
mance in the early stages of training, ωt is increased to maximally eliminate the
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interfering information from the previous brain network representation. Con-
versely, when the loss remains low and accuracy is high, ωt is decreased to retain
the important information from the previous iteration while also facilitating the
generation of the current augmented network. ωmin and ωmax are set to 0.25 and
0.95, to constrain the boundaries of dynamic updates. The lower bound ωmin

that each epoch makes at least a minimal contribution to the augmented view,
preserving essential discriminative information throughout training. The upper
bound ωmax, on the other hand, allows important information to propagate
across epochs, preventing premature convergence and enabling gradual refine-
ment of representations. Moreover, the sigmoid function σ is used to constrain
fluctuations within the range of [0, 1].

2.3 Multi-view Graph Contrastive Learning

We introduce a multi-view graph contrastive learning approach that integrates
the min-max contrastive loss Lcontrast with the classification loss Lclass.

Min-Max Multi-view Contrastive Loss. In conventional graph contrastive
learning [9, 23], the contrastive loss is typically computed between the augmented
and original views. In our semantic scenario, we enforce a minimization con-
straint between GSA and G to capture disorder-related functional connectivity,
while promoting topological diversity between GCA and G, as specified below:

LSA =
1

B

B∑
i=1

log
exp(sim(GSA

i , Gi)/τ)∑B
j=1,j ̸=i exp(sim(GSA

i , Gj)/τ)
(4)

LCA = − 1

B

B∑
i=1

log
exp(sim(GCA

i , Gi)/τ)∑B
j=1,j ̸=i exp(sim(GCA

i , Gj)/τ)
(5)

where, τ is the temperature parameter that controls the smoothness of the sim-
ilarity which is set to 0.5, consistent with Xu et al [20]. And sim(GSA

i , Gi) =
GSA

i
⊤
Gi

∥GSA
i ∥∥Gi∥

is the cosine similarity function [19].
To further explore discriminative features between two augmented views GSA

and GCA, we introduce maximized contrastive constraints LSA,CA. This objec-
tive is designed to amplify the semantic differences between the two views, as
GSA emphasizes individual-specific semantics while GCA captures inter-subject
variability. By maximizing their discrepancy, MGCL-DA is encouraged to dis-
tinguish and preserve both intra-individual uniqueness and cross-individual dif-
ferences in expression patterns.

LSA,CA = − 1

B

B∑
i=1

log
exp(sim(GSA

i , GCA
i )/τ)∑B

j=1,j ̸=i exp(sim(GSA
i , GCA

j )/τ)
(6)

Combining the above multi-view losses, we can obtain the total graph con-
trastive loss Lcontrast of our proposed MGCL-DA framework as follows:

Lcontrast = α · LSA + (1− α) · LCA + β · LSA,CA (7)
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where α and β are non-negative tuning parameters.

Objective Loss Function of MGCL-DA. For downstream brain disorder
diagnosis tasks, we employ a composite objective loss incorporating binary cross-
entropy loss Lclass. The classification loss is computed based on classification
probabilities, which are obtained from a convolutional operation (kernel size:
1× 1) on G followed by a sigmoid activation function. The final objective loss L
can be defined as:

L = Lclass + λLcontrast (8)

where λ is a hyper-parameter that balances the contributions of these two loss
terms. The subsequent experimental results are all obtained when λ is set to 1.

3 Experiment

Dataset and Data Pre-processing. We evaluate our proposed MGCL-DA
framework using one Major Depression Disorder (MDD) rs-fMRI dataset[11, 22].
This dataset includes subjects from two hospitals: Zhongda Hospital of South-
east University and Xinxiang Medical University’s Second Affiliated Hospital,
which comprises 64 healthy controls (HCs) (31 males, 33 females, age 41.48 ±
13.44, education 11.84 ± 4.56 years) and 107 MDD patients (52 males, 55 fe-
males, age 39.55 ± 14.86, education 10.22 ± 4.36 years). HCs are recruited via
advertisements, while MDD patients are from inpatient and outpatient psychi-
atry departments. MDD patients met DSM-IV criteria, have a first depressive
episode after 18, a HAM-D24 score ≥ 20, and no major psychiatric or physical
illnesses. It is noteworthy that, to ensure consistency in scanning parameters and
minimize differences between the two study locations, a designated individual
is invited to adjust the magnetic resonance scanning parameters at both sites
prior to data collection [11].

The rs-fMRI image data in MDD dataset are preprocessed using DPARSF
[21] and the Automated Anatomical Labeling (AAL) template [14], dividing the
brain into 116 regions. After discarding the first 10 time points, pre-processing
includes: (1) head motion correction (exclusion if motion > 2.0 mm/degrees),
(2) co-registration of T1 and functional images, (3) spatial normalization (3 mm
voxels), (4) spatial smoothing (6-mm Gaussian kernel), (5) trend removal, (6)
nuisance signal regression, (7) band-pass filtering (0.01–0.08 Hz), and (8) time
series normalization (zero mean, unit variance).

Implementation Details and Evaluation Metric. Moreover, we conduct ex-
periments on PyTorch with a 3090 GPU. In our experiments, the training/test
data is randomly split by five-fold cross-validation, and repeated 5 times using
random seeds. Classification performance is tested using five metrics: accuracy
(ACC), the area under the subject operating characteristic curve (AUC), preci-
sion (PRE), recall (REC) and F1 score (F1). Final results are the aggregation
of mean values and standard deviation of all methods.
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Table 1. Experimental results for different methods on MDD datasets.

Model ACC (%) AUC (%) PRE (%) REC (%) F1 (%)

CC+SVM 64.23±1.11 50.20±0.50 63.55±1.10 69.83±0.78 66.68±0.70

SPL+RF 62.59±1.06 50.25±0.74 62.57±1.04 70.26±0.78 66.16±0.68

BrainGNN 73.44±1.56 74.51±2.25 68.74±1.99 74.31±3.53 71.37±1.95

UFA-NET 75.67±1.37 76.56±2.24 66.29±1.90 75.60±2.30 70.63±1.48

UCGL 74.33±1.60 76.34±2.08 64.92±1.88 75.44±2.25 69.75±1.45

GCDA 80.95±2.61 84.26±3.68 72.62±7.27 75.92±6.73 72.25±3.17

MGCL-DA 84.76±3.98 87.99±3.30 73.07±8.49 76.22±4.86 73.46±4.34

Table 2. Ablation study results for MGCL-DA framework on MDD dataset.

Model ACC (%) AUC (%) PRE (%) REC (%) F1 (%)

MGCL-DA-I 77.14±9.16 79.74±9.36 64.83±4.36 73.58±5.50 65.36±6.74

MGCL-DA-II 78.10±5.43 77.89±9.36 61.43±7.25 65.56±9.20 64.37±7.53

MGCL-DA-III 79.05±2.61 80.10±5.37 64.84±9.80 58.33±7.59 59.62±8.68

MGCL-DA 84.76±3.98 87.99±3.30 73.07±8.49 76.22±4.86 73.46±4.34

Competing Methods. We compare the proposed MGCL-DA with six state-of-
the-art competing methods on the MDD dataset. These include two traditional
machine learning methods, CC+SVM [5] and SPL+RFs [1], two graph con-
volutional networks, Brain-GNN [8] and UFA-NET [2], as well as two recent
graph contrastive learning-based models, UCGL [17] and GCDA [18].

Classification Performance Results. The experimental results shown in Ta-
ble 1 demonstrate that the MGCL-DA achieves state-of-the-art performance in
MDD classification, attaining an accuracy of 84.76% and an AUC of 87.99%. It
significantly outperforms conventional machine learning methods, with a 20.53%
accuracy gain over CC+SVM, and surpasses recent GCN baselines, showing an
11.43% improvement of AUC compared to UFA-NET. Additionally, the 3.81%
improvement in accuracy over MGCL-DA highlights the advantage of integrat-
ing dynamic network topology augmentation with multi-view contrastive learn-
ing compared to the current state-of-the-art (SOTA) GCL methods. Moreover,
the balanced precision-recall characteristics indicate effective mitigation of class
imbalance issues commonly encountered in neuroimaging-based diagnosis.

Ablation Study. To further validate the contribution of the dynamic aug-
mentation update mechanism, we compare MGCL-DA with two of its variants.
Specifically, MGCL-DA-I sets ωt = 1 in Eq. 2, which means the augmented brain
network depends solely on the current iteration. MGCL-DA-II sets ωt = 0.5 to
evaluate the influence of a fixed weight on topology augmentation. Meanwhile,
to validate the effectiveness of maximizing the discrepancy between GSA and
GCA, MGCL-DA-III is optimized with β initialized to 0 in Eq. 7.
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Fig. 2. Analysis of (a) dynamic factor ωt, (b) multi-view contrast params α, β.

As shown in Table 2, all variants of the MGCL-DA framework exhibit a
decline in metrics. Specifically, MGCL-DA-I shows a 7.62% drop in accuracy.
The lack of adaptive brain network adjustments during training leads to the loss
of critical feature representations, ultimately degrading performance. Similarly,
MGCL-DA-II, which fixes the adjusted weight factor, causes an accuracy de-
crease of 6.66%. This circumstance hinders information flow during training and
overlooks differences in functional connectivity expression between consecutive
augmented brain networks. MGCL-DA-III exhibits a decrease of 7.89% in AUC,
indicating the presence of valuable discriminative information to be explored
within the two complementary augmented brain network views.

Analysis of Dynamic Adjusted Weight Factor. In Fig. 2(a), we present
the variation trend of ωt over the first 100 iterations as a representative case.
It can be observed that during training, ωt consistently decreases as the objec-
tive loss progressively reduces. During the early training stages, the framework’s
limited brain network representation ability and lower classification accuracy
cause the augmented views to rely heavily on immediate results. At this stage,
the significant decrease in ωt reflects the dynamic propagation and updating of
discriminative information within the brain network. As the model’s fitting ca-
pability improves and it learns better to extract discriminative representations
of brain networks, ωt decreases, assigning greater weight to the augmented views
generated in the previous iteration, which aligns with our expectations. Eventu-
ally, ωt stabilizes around 0.3 at the end of training, indicating a convergence point
where the model effectively balances the previous discriminative information and
preservation of inter-subject variability for robust representation learning.

From above update mechanism analysis, it can be further hypothesized that,
during the training process, the discriminative representation behind brain net-
work augmentation for each subject is selectively retained or removed under the
control of the dynamically adjusted ωt. Throughout the updating process, the
framework learns to identify unusual functional connections conducive to MDD
classification, while filtering out irrelevant or redundant information.
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Analysis of Multi-view Contrastive Loss Hyper-parameters. To exam-
ine the effects of hyper-parameters in multi-view contrastive loss of Eq. 7, we
adjust the values of α and β. The parameter α, which regulates the contribution
of self-aware and cross-sample augmentation, is varied from 0.0 to 1.0. Mean-
while, β, reflecting the impact of differences between augmented brain networks,
is tested at 0.001, 0.01, 0.1, 1, and 10. Fig. 2(b) presents a subset of the results for
the parameter combinations. Experimental results indicate that the MGCL-DA
framework achieves optimal performance when α = 0.7 and β = 1.

4 Conclusion

In this work, we introduce MGCL-DA for automated brain disorder diagnosis us-
ing rs-fMRI data. Dynamic self-aware and cross-sample topology augmentations
effectively capture the complex and evolving nature of brain networks over time.
Meanwhile, multi-view graph contrastive learning incorporating min-max con-
trastive constraints extracts critical discriminative connectivity between the aug-
mented and original brain networks. Extensive experiments and ablation studies
on the MDD dataset demonstrate superior performance over SOTA methods and
the feasibility of the two proposed components. Moving forward, we will focus
on the dynamic brain network representation mechanisms and the contrastive
constraints of specific semantic information under multiple views, in order to ef-
fectively handle the challenges of understanding complex brain activity patterns
and improving the interpretability of multi-view semantic analysis.
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