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Abstract. Solving inverse problems, such as image restoration and re-
construction, is essential in medical imaging. Recently, research on deep
learning-based methods for solving 3D data problems has become a fo-
cus in the field. Existing diffusion models achieve excellent reconstruction
quality but face challenges with volume inconsistency and high compu-
tational costs when dealing with 3D medical images. To overcome these
challenges, we propose Blaze3DM, a novel approach that combines tri-
plane neural fields with a diffusion model for effective 3D medical image
reconstruction. Blaze3DM leverages compact, data-dependent triplane
embeddings to ensure volume consistency and significantly improve the
computational efficiency of the diffusion model. Furthermore, we intro-
duce a guidance-based sampling method for zero-shot 3D inverse problem
solving, enabling Blaze3DM to generate high-fidelity 3D volumes from
limited, low-quality 2D slices. We evaluate Blaze3DM on various 3D in-
verse problem tasks across multiple imaging modalities, including sparse-
view CT, limited-angle CT, compressed-sensing MRI, and MRI isotropic
super-resolution. The experimental results demonstrate that Blaze3DM
not only achieves state-of-the-art reconstruction performance but also
markedly improves computational efficiency by approximately 22 to 40
times. Code is available at: https://github.com/Jenn-He/Blaze3DM.
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1 Introduction

The medical image inverse problem involves reconstructing complete image infor-
mation from limited observed measurements, which is challenging due to its ill-
posed nature. Representative applications of this include sparse-view computed
tomography (SV-CT) [8,29], limited-angle computed tomography (LA-CT) [8,
29], and compressed-sensing magnetic resonance imaging (CS-MRI) [9, 10]. In 3D
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scenarios, the inverse problems expand to include issues like resolution degrada-
tion in the slice dimension, leading to tasks such as MRI isotropic reconstruction
(ZSR-MRI) [8]. The high dimensionality and complex manifold structure of 3D
medical images make it difficult to achieve high-quality image reconstruction
with high computational efficiency. Therefore, it is critical to develop a com-
pact and efficient representation of 3D medical images. Such representation can
be used not only for solving 3D inverse problems but also for many other 3D
medical image analysis applications.

Nowadays, diffusion models (DMs) [13,17,28, 23] have demonstrated excel-
lent performance in image generation by gradually generating samples from
noise. Recent studies[1, 5, 18,25, 32| have explored using diffusion models to ad-
dress reconstruction and super-resolution challenges. These works leverage dif-
fusion processes to progressively refine images, ultimately yielding high-quality
reconstructions. [6] further combined diffusion sampling with the Krylov sub-
space to enhance the efficiency of solving large-scale inverse problems. However,
in 3D scenarios, these methods only infer slice by slice and stack individual slices
processed by 2D backbone models.

Recently, DiffusionMBIR [7] and TPDM [16], have both utilized diffusion
models as the generation backbone in 3D scenarios. DiffusionMBIR|[7] employs
the model-based iterative reconstruction (MBIR) method [14] and diffusion model
to solve zero-shot medical inverse problem. It models stacked slices with addi-
tional Total Variation (TV) inter-slice constraints along the Z-axis, but still
struggles to model long-range dependencies across the 3D distribution. Con-
sequently, TPDM [16] makes further improvements by modeling the 3D data
distribution as a product of two perpendicular 2D plane distributions and per-
forms posterior-based sampling [5] alternatively in perpendicular directions to
solve the 3D inverse problem. While these methods can produce high-quality
results, they pose substantial challenges in computational costs.

To address these limitations, we leverage neural field[35, 21, 20, 33|, especially
triplane neural fields[2,27,30,34] to efficiently and expressively represent 3D
medical volumes. By constructing triplane embeddings and using a powerful dif-
fusion model to learn the complex distribution of these triplane representations,
we achieve expressive and effective 3D volume generation with rich geometric
details, ensuring volumetric consistency and information compactness. In sum-
mary, our study has the following contributions:

— Blaze3DM is the first to use triplane neural fields for 3D medical image
modeling. This representation improves volumetric consistency and boosts
diffusion model efficiency.

— We present a guidance-based sampling method for the triplane diffusion
model. By incorporating conditions related to degraded images and trans-
formations, our model performs zero-shot 3D inverse problem solving and
generates high-quality volumes.

— Experiments on four 3D medical tasks (SV-CT, LA-CT, CS-MRI, ZSR-MRI)
show Blaze3DM achieves high performance and efficiency, with a speedup of
22 to 40 times over existing methods.
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Fig. 1. The diagram of Blaze3DM. (a) The Triplane Decoder Network decodes the
triplane embedding f into the volume intensity I using a 3D-aware module and a
lightweight MLP decoder. (b) The Triplane Diffusion Model, based on a diffusion
UNet, learns the triplane distribution for unconditional or conditional generation. (c)
Guidance-based sampling uses random slices of the measurement volume and the degra-
dation transform for zero-shot 3D volume restoration.

2 Methodology

2.1 Overview

Blaze3DM comprises two core components: the Triplane Decoder Network and
the Triplane Diffusion Model. The training process has two stages. First, we con-
struct triplane embeddings by jointly optimizing the data-dependent embeddings
with the shared Triplane Decoder Network on high-quality medical volumes. Sec-
ond, we train a powerful Triplane Diffusion Model to learn the distribution of
these high-quality triplane embeddings. During inference, the Triplane Diffu-
sion Model generates high-quality triplanes from limited degraded slices using a
guidance-based sampling method, then the generated triplane is decoded into a
3D volume by the Triplane Decoder Network. The diagram is shown in Fig 1.

2.2 Triplane Decoder Network

Let I € REXWXD denote the intensity of the medical volume V', where H, W, and
D represent the dimensions of the volume along X,Y and Z axes, respectively.
For each volume V', we define its corresponding triplane representation as f €
RNXNX3C where N and C denote the resolution and channel size. The position
p of the neural field ranges from [—1,1].
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3D Aware Module. The triplane representation consists of three axis-aligned,
orthogonal 2D feature maps f = {fzy, fyz, fz2}, corresponding to the XY, YZ,
and XZ planes, respectively. To model interactions between these planes, we em-
ploy a 3D-aware module (3DAM) [34], which ensures each hyperplane absorbs
information from the others, updating f to F. As shown in Fig.1 (a), 3DAM in-
cludes three 2D convolution networks, { D", D%*, D3*}, each of which processes
its corresponding hyperplane. For the XY plane, Fy,, = tanh(Dy?(f)+ fuy), with
similar operations for the YZ and XZ planes, yielding F' = {F,,, F,., Fy.}. The
final representation at position p is obtained by concatenating the feature maps:

F(p) = Fa:y(p) ) Fyz<p) @ Fa:z(p)

MLP Decoder. After obtaining representation F(p) at position p, we apply a
lightweight MLP network D;"lp to predict volume intensity I(p). To overcome
spectral bias [26] and extract finer details, we integrate Fourier Position Encoding
(FPE) [24] to enhance the MLP’s capacity and replace ReLU activation functions
with Sinusoidal functions [22] to better capture complex and periodic patterns:

I(p) = D} ([F(p), FPE(p)]). (1)

Triplane Fitting. We take high-quality 3D medical volumes as training dataset
{V1, Va, ..., Vas}. The triplane fitting process involves jointly optimizing both the
data-dependent triplane embeddings {fi, f2, ..., far} and the shared decoder D,
to reconstruct the original volume intensity. In each training step, we randomly
select one volume V; and then randomly sample a batch of spatial points to form
training pairs {p, I;(p)}. The reconstruction loss function is the mean square
error (MSE) loss between predicted intensity I;(p) and ground truth I;(p).

L(p) — L(p)|* (2)

ﬁrec = EPEVi

Loss Regularization. To ensure the triplane representation can be well learned
by diffusion models or decoded into images, we added regularization terms to
constrain the characteristics of triplane embeddings.

First, we use total variation (TV)[3] regularization to enforce smooth textures
in the triplane embeddings, reducing the difficulty of fitting the distribution for
the generation backbone:

Lrv =Epev, (TV(fiwy) + TV (fiyz) + TV (fiez)) - (3)

Second, we apply Lo regularization to prevent extreme values in the triplane
embeddings, reducing the impact of outliers on the diffusion model:

L1, =Epevi (Ifiay I + [ figz ) + || fioz (0)7) - (4)

Third, we introduce Explicit Intensity Regularization (EIR) to prevent overfit-
ting to a fixed volume size and to enable arbitrary-size volume decoding, inspired
by NFD [27]:

Lerr = Epev, (Hfi(p) —Lilp+ w)||2) , weU(p), (5)
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Algorithm 1 Guidance-based Sampling

Require: Pretrained decoder D+, degradation transformation A, measurement y,
gradient scale )\, guidance slice count ~, fixed variance Xy = (1.

1: fr ~N(0,011)

2: fort=Tto1ldo

3:  fi—1 < sample from N (o (ft), X+)

4:  V, < random select « slices from degraded volume ,
5 fim1 e fiot FASY s Bpev, [ADs (Folfima () - y(0)|
6: end for

7= D¢* (fo)

8: return z

where U(p) denotes the spatial neighborhood of position p. The overall training
objective can be described as:

£ 0" =argmin{Lyec + M Lry + XLy, + XsLEIR}, (6)

Qs

where A1, A2, A3 are the regularization weights.

2.3 Triplane Diffusion Model

We use diffusion model as the generative backbone network to learn the distri-
bution of triplane embeddings of high-quality volumes, and perform uncondi-
tional /conditional generation for medical volume reconstruction.

Diffusion Model Training. We adopt the diffusion procedure of DDPM [13]
with a fixed variance schedule {3;}7_; and follow its training objective to predict
the noise € in certain timesteps. However, the triplane representation f consists
of three 2D planes fzy, fyz, and f,., each corresponding to different spatial
orientations and exhibiting distinct distribution patterns. To avoid gradient ex-
plosion issues [34] when jointly optimizing these three distinct components, we
decompose the training loss into three separate terms:

'Cdf =y [Hexy - 50(ftat)zy||2 + ||6yz - Ee(fmt)ysz + Hemz - eé(ft»t):rzn2] (7)

Guidance-based Sampling. Considering a forward model for an imaging sys-
tem y = A(x), the image inverse problem means estimating the unknown image
x given limited measurement y, where A denotes the degradation transforma-
tion. We follow [11] to formalize the inverse problem as a posterior estima-
tion problem. Based on DPS [5], we propose a guidance-based sampling method
that additionally corrects predicted f;—; towards the manifold y = A(%y) =
A(Dg-(fo(fi—1))), which can be achieved through gradient descent:

fio1  fio1 + AZ1 V[ ADge (folfim1)) — I, (8)
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where fj is estimated using the Tweedie formula[12, 15], fo(ft_l) = E[folfi-1] =
C%(:ct — /1 — aye;). Our homoscedastic noise design incorporates the noise pa-
rameter into the guidance step size A, thereby eliminating the need for covariance
matrix inversion. We set Xy = ;1. To reduce computational costs, we randomly
select ~y slices from the degraded volume (XY slices for SV-CT, LA-CT, CS-
MRI, and XZ/YZ slices for ZSR-MRI task) to perform efficient guidance. The

pseudo-algorithm for our guidance-based sampling is depicted in Algorithm.1.

3 Experiments

We conduct experiments on four classic 3D medical inverse problem tasks: SV-
CT, LA-CT, CS-MRI, and ZSR-MRI. Our forward model utilizes TPDM’s slice-
independent degradation assumption. In the formula y = Ax 4+ n, A indicates
partial sampling in the sinogram for SV-CT and LA-CT tasks, Poisson disk
sampling in k-space for CS-MRI tasks, and resolution down-sampling in the slice
dimension for ZSR-MRI. The n denotes additive measurement noise. To compare
fairly with DiffusionMBIR [7] and TPDM][16], we specifically perform uniform
36-view downsampling for SV-CT, 0-90°downsampling for LA-CT, retrospective
x 8 acceleration Poisson sub-sampling for CS-MRI, and 4x anisotropy along Z-
axis for ZSR-MRI task.

3.1 Dataset and Implementation Details

Dataset. For CT tasks, we take public AAPM-CT dataset [19] with 10 contrast-
enhanced abdominal CT volumes. We follow [16] to use the same 9 volumes for
training and 1 for testing. The volumes are sized at 256 x256x256 with about 2
mm? voxels. For MRI tasks, we use public human brain IXI-MRI dataset!, taking
200 T1-weighted MRI for training and 10 volumes for testing. The volumes are

resized to 256 x 256 x 256 after removing black slices, with near 1 mm? voxels.

Implementation Details. (1)Triplane Fitting: The triplane size is set to 128 x
128 x 32. The weights in Eq.(6) are set to Ay = 0.01, A2 = 0.001, 3 = 1. We
take Adam optimizer (8, = 0.9, B2 = 0.999) with a learning rate of 1e — 3. The
triplane fitting is trained for 8k steps for CT and 40k for MRI. (2) Diffusion
Model Training: We take guided diffusion[11] as model architecture, which is
compatible with NFD [27] pretrained checkpoint on the triplane embeddings of
ShapeNet dataset [4], making it useful for model initialization. The learning rate
is 1e — 5 and the batch size is set to 1. The diffusion model trains for 200k steps
for CT and 600k for MRI. (3) Guidance-based sampling: The diffusion process
includes 1000 steps with a uniform noise schedule. We set v = 16 with 256 slices
per volume, yielding a 6.25% slice sampling rate per iteration. A larger v is
theoretically better, so we chose the maximum feasible value within our GPU
memory limits (24G). The guidance scale is set to A = 6 for CT tasks, and
A =10 for MRI tasks.

! http://brain-development.org/ixi-dataset/
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SV-CT LA-CT
PSNR 1 Average SSIM 1+ PSNR 1 Average SSIM 1

DiffusionMBIR [7] 34.78+£0.08 0.858+0.001 34.644+0.08 0.8524+0.001

TPDM |[16] 38.25+0.06 0.949+0.001 38.02+0.07 0.9484+0.001

Blaze3DM (Ours) 38.39+0.03 0.9514+0.001 38.13+0.04 0.950+0.001
Table 1. Quantitative evaluation (PSNR, Average SSIM) of SV-CT and LA-CT. 1
indicates higher is better. Std is upon 3 repeated experiments.

Methods

CS-MRI ZSR-MRI
Methods
PSNR 1+ Average SSIM 1 PSNR 1 Average SSIM 1
DiffusionMBIR [7] 37.21+£0.05 0.9354+0.002 N/W
TPDM |[16] 39.1840.04 0.951+£0.001 38.424+0.04 0.946+0.001

Blaze3DM (Ours) 39.35+0.02 0.953+0.001 38.86+0.03 0.950+0.001

Table 2. Quantitative evaluation (PSNR, Average SSIM) of CS-MRI and ZSR-MRI.
N/W: Not Working. 1 indicates higher is better. Std is upon 3 repeated experiments.

3.2 Results of Inverse Problem Solving

SV-CT and LA-CT. The quantitative results of 36-views SV-CT and 90° LA-
CT in Tab.1 demonstrate that our Blaze3DM outperforms DiffusionMBIR [7]
and TPDM [16] in both PSNR and SSIM[31] metrics. The visualization results
of SV-CT and LA-CT are shown in Fig.2 and Fig.3 respectively. Despite TV
regularization, DiffusionMBIR tends to produce layer artifacts along the slice
direction. TPDM samples appear overly smooth, potentially losing structures
in low-contrast areas. In contrast, Blaze3DM ensures good 3D consistency and
provides superior details that closely match ground truth.

CS-MRI and ZSR-MRI. The quantitative evaluation is shown in Tab.2. Dif-
fusionMBIR exhibits layered artifacts in both XZ and YZ planes due to insufhi-
cient constraints. While TPDM shows better consistency, it suffers from several
jagged artifacts in the edge regions of XY plane, which may be caused by al-
ternative reconstruction in perpendicular directions. In contrast, the Blaze3DM
method demonstrates excellent detail in 3D space and achieves state-of-the-art
performance.

Efficiency Analysis. We compare the inference efficiency of Blaze3DM, Diffu-
sionMBIR, and TPDM on four tasks, evaluated by Wall-clock time and FLOPs
(Floating Point Operations per second), as shown in Tab.3. For single-volume
reconstruction, DiffusionMBIR performs slice-by-slice inference along the Z-axis,
taking approximately 1 day. TPDM uses two perpendicular diffusion models for
slice-by-slice inference, taking nearly 1.5 days. In contrast, Blaze3DM uses a
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(a) Measurement  (b) DiffusionMBIR (¢) TPDM (d) Ours (e) Ground Truth

Fig. 2. 36-view SV-CT reconstruction results of the test volume of AAPM CT dataset.
(First row: axial plane; Second row: coronal plane; Third row: sagittal plane)

A\

(a) Measurement  (b) DiffusionMBIR (¢) TPDM (d) Ours

e

(e) Ground Truth

Fig. 3. 90° LA-CT reconstruction results of the test volume of AAPM CT dataset.
(First row: axial plane; Second row: coronal plane; Third row: sagittal plane)

triplane diffusion model for a single inference and takes only 1 hour,thereby re-
ducing the time complexity from O(S) to O(1), where S denotes the number
of slices. Overall, Blaze3DM is nearly 22x faster than DiffusionMBIR and 40x
faster than TPDM, while requiring approximately half the FLOPs.

4 Conclusion

We propose Blaze3DM, an efficient 3D medical volume generative model that
addresses volumetric inconsistency, reconstruction artifacts, and low efficiency.
Using a triplane neural field and a diffusion model, it enables high-fidelity syn-
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Methods Time (h) Memory (G) FLOPs (G)

DiffusionMBIR 18.0+2  16.24+0.2 663.3
TPDM 32.1+£3  21.5+0.3 661.0

Blaze3DM 0.8+0.2 22.1+0.3 349.7

Table 3. Inference time, memory costs and FLOPs for single volume reconstruction.

thesis and zero-shot inverse problem solving. Experiments show Blaze3DM offers
competitive performance with significant speedup in inference time.
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