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Abstract. Most current neuroimaging analyses in studies of brain dis-
orders assume a homogenous presentation of the disorder such that tra-
ditional statistical analysis methods based on Gaussian distributions can
be applied. Yet, most brain disorders present with a heterogeneous spec-
trum of cognitive, behavioral, morphometric as well as functional mani-
festations. In this paper, we introduce a novel approach called PRADA
(Phenotype Representation and Analysis via Discriminant Atypicality)
that embraces the heterogeneity of both typical and atypical brain mor-
phometry. This approach employs Multiscale Score Matching Analy-
sis (MSMA), a global and local multiscale out-of-distribution analysis
via the gradients of the log density (scores). Combining MSMA and
manifold-mapping, we compute a morphospace of brain phenotypes rep-
resenting deviations from a population of typical subjects. Using these
brain phenotypes, disorder-related subtyping can be performed. Fur-
thermore, subject-specific profiles of atypicality can be extracted via
Spatia- MSMA and summarized per subtype. We show the application
of PRADA to structural MRI data in a study of Autism Spectrum Disor-
der (ASD). The resulting analysis detects disorder-related subtypes and
reveals that subtype-specific structural atypicality correlates with cog-
nitive and behavioral outcomes. These results highlight the potential of
PRADA to discover disorder relevant phenotypes.
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1 Introduction

Neurodevelopmental disorders (NDDs) are a diverse group of conditions charac-
terized by atypical brain development, leading to cognitive, social, and emotional
impairments. NDDs such as autism spectrum disorder (ASD), Down Syndrome
(DS), and attention-deficit /hyperactivity disorder (ADHD), are inherently het-
erogeneous in presentation and neurobiology [14]. For instance, 30% of individ-
uals with ASD also receive an ADHD diagnosis, underscoring the significant
overlap and complexity of NDDs [22]. Understanding this variability is crucial
for advancing diagnostic methods, personalized interventions, and insights into
the shared and unique neural mechanisms underlying these conditions.

Atypicality in NDDs refers to deviations from normative brain structures or
functions that influence cognitive, social, or emotional behaviors. These devia-
tions can manifest as differences in brain morphology, connectivity, or regional
activity patterns [10]. Structural atypicality is often assessed relative to a con-
trol population, enabling the detection of atypical phenotypes through advanced
machine learning techniques [26]. By modeling brain morphometry, researchers
can identify disorder-specific patterns and subgroups, providing a deeper under-
standing of the variability of NDDs [11].

Deep learning approaches such as convolutional neural networks (CNNs) have
been used to classify atypical brain patterns. For example, Schirrmeister et al.
applied CNNs to detect abnormalities in EEG data [18]. While effective for EEG
signals, these methods face challenges in handling structural MRI data due to
differences in resolution and complexity.

Attribution-based methods identify anomalies by highlighting input features
that significantly influence a model’s predictions, often using techniques like
GradCAM or SHAP for feature importance localization [20]|. However, such
methods require labeled data and are less effective in unsupervised settings.

Out-of-distribution (OOD) detection has emerged as a powerful tool for iden-
tifying deviations from normative populations. It has been widely used in health-
care, fraud detection, and self-driving applications [21]. In the context of neu-
roimaging, OOD methods offer a structured framework to evaluate how individ-
ual brain phenotypes deviate from a learned normative distribution. A variety
of OOD computational approaches have been applied to neuroimaging data.
Generative models, such as generative adversarial networks (GANSs), attempt to
reconstruct normative data and detect anomalies based on reconstruction errors.
Schlegl et al. used GANs for anomaly detection in medical imaging [19]. How-
ever, these methods often fail when anomalies closely resemble normative data
or when reconstruction quality is suboptimal for this task.

Projection-based methods embed neuroimaging data into a lower-dimensional
space to distinguish normative from atypical patterns. Bergmann et al. intro-
duced a Student-Teacher network, where discrepancies between a larger Teacher
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model and a compressed Student model highlight anomalies [1]. Although ef-
fective, these methods require careful calibration and lack interpretability in
complex neuroimaging data.

Multiscale Score Matching Analysis (MSMA) computes atypicality by ana-
lyzing score norms derived from MRI data across multiple noise scales [12]. This
approach provides robust anomaly detection for high-dimensional data, such as
images, but lacks direct mechanisms for visualizing and interpreting atypicality.
Here, we aim to extend MSMA for such a localized interpretation of atypicality
on a manifold representing a morphospace of brain structure.

Manifold learning techniques such as t-SNE and UMAP have been extensively
applied to neuroimaging data to uncover meaningful low-dimensional represen-
tations of brain activity patterns [2,28]. Gao et al. demonstrated how nonlinear
embedding techniques provide insights into the structure of brain phenotypes [6].
However, traditional manifold learning methods suffer from limitations such as
lack of adaptability, lack of invertibility, poor global structure representation,
and difficulty handling heterogeneous data distributions [24].

Self-organizing maps (SOMs) have been widely applied for robust manifold
mapping, clustering, and visualization of neuroimaging data while preserving
topological relationships [9]. However, SOMs require predefined map sizes, which
limits their flexibility and scalability in complex datasets. Growing Hierarchical
Self-Organizing Map (GHSOM) addresses these limitations by dynamically ex-
panding and adding hierarchical layers, enabling a low hyper-parameter-based
interpretable representation of data [4,16|. This adaptability makes GHSOM a
promising tool for analyzing neuroimaging data, where structural heterogeneity
is a key characteristic.

Building on MSMA and its voxel-wise extension Spatial-MSMA [13], we in-
troduce PRADA (Phenotype Representation and Analysis via Discriminative
Atypicality), a novel framework that extracts a morphospace of atypicality for
analyzing disorder-related brain phenotypes. PRADA employs GHSOM to create
a low-parameter, hierarchy-aware manifold without requiring a predefined map
size, improving interpretability. It uniquely integrates MSMA'’s robust atypical-
ity detection with GHSOM’s hierarchical structure to enable visual and quan-
titative subtype discovery not addressed by existing image-based deep-learning
methods. This work presents the following key advancements in the proposed
PRADA approach:

— A novel framework called PRADA for discovering the heterogeneity of NDDs
by combining atypicality quantification via MSMA and morphospace repre-
sentation via GHSOM.

— Application of PRADA to structural neuroimaging data, enabling dynamic
and hierarchical mapping of brain phenotypes.

— Analyzing the correlation of image atypicality with behavioral assessments
to improve our understanding of NDD phenotypes.

— Application of PRADA to a study of ASD illustrating the potential for
disorder-relevant subtypes/phenotypes.



4 E. Onemli et al.

Table 1. Subject distribution by dataset, scanner, sex, and age (mean =+ std).

Dataset Prisma Fit Prisma MR750 Achieva Ingenia Sex: F/M Total Age (yrs)
ABCD Train 448 382 162 68 40 603/499 1107 9.51 £+ 0.50
HCP-D Train - 378 - - - 193/185 378 12.73 £ 2.85
ABCD Val 50 44 17 7 6 60/65 125 9.48 £ 0.52
HCP-D Val - 40 - - - 28/12 40 12.05 £+ 2.74
IBIS Control - 82 - - - 32/50 82 9.33 £ 1.69
IBIS-ASD — 55 — — — 12/43 55 10.09 £ 1.62

2 Materials

2.1 Participants

Our study includes both a typical control population and a testing population
with a neurodevelopmental condition. The control group comprises typically de-
veloping school-age children, selected from two large public datasets: the Adoles-
cent Brain Cognitive Development (ABCD) Study and the Human Connectome
Project Development (HCP-D) Study, assessed between 7-11 years of age. These
datasets were filtered to ensure a representative inlier cohort. The Child Behav-
ior Checklist (CBCL) [8] was used to exclude children with summary or subscale
measures in the top 5% indicating behavioral issues. This selection resulted in a
total of 1650 participants, 1485 were selected for training, and 165 were reserved
for validation. The testing population was derived from the Infant Brain Imaging
Study (IBIS), which examines autism spectrum disorder (ASD) in a population
at high familial likelihood. 55 IBIS subjects with an ASD diagnosis were as-
sessed between 7-12 years of age. Additionally, to mitigate domain shift effects,
we selected an additional set of 82 low familial likelihood control participants,
without a diagnosis of ASD, from IBIS for training and validation (Table 1).

Images were intensity-clipped to the 1st—99th percentiles, brain-masked using
ANTsPyNet’s deep-learning brain masking, and rigidly registered (T1w/T2w) to
the MNI-152 Imm template using ANTs default settings. N4 bias correction and
histogram matching (128 bins, 5 points, MNI-152) were applied. Background was
cropped, intensities min—max normalized to [-1, 1]. T1w/T2w volumes treated
as two-channel inputs to the U-Net—based denoising score-matching network.
Behavioral measures such as the Differential Ability Scales-II (DAS-II) [5] and
the Vineland Adaptive Behavior Scales-II (Vineland-II) [3] were used to assess
cognitive and adaptive functioning. Additionally, the Autism Diagnostic Obser-
vation Schedule (ADOS) [7] was used to assess the severity of autism-related
symptoms based on a clinician-administered semi-structured evaluation of so-
cial, communicative, and repetitive behaviors.

3 Method description

Figure 1 schematically illustrates the proposed framework. Via MSMA, feature
embeddings are generated that captures atypicality. Via GHSOM, a manifold
representing a morphospace of brain phenotypes is fit to these. Unseen atypical
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Fig. 1. Overview of the proposed framework for identifying brain atypicality patterns.
An MSMA model is trained on inlier brain MRIs to compute a global atypicality. Per-
voxel anomalies are estimated using spatial MSMA. A GHSOM learns a morphospace
of brain phenotypes, mapping test samples to their closest phenotype. Primary and
secondary phenotypes are identified, and correlations between regional atypicality and
behavior are calculated.

data is then mapped into that morphospace to discover disorder phenotypes.
Per-voxel atypicality quantification allows the generation of atypicality likelihood
heatmaps and regional summaries for brain-behavior correlation analysis.

3.1 Machine Learning for Atypicality Detection

We use Multiscale Score Matching Analysis (MSMA), an unsupervised method
that quantifies atypicality based on the norm of the score function—i.e., the
gradient of the log-likelihood of the data distribution [12].

Multiscale Score Matching Analysis: MSMA builds on denoising score
matching (DSM) by estimating score functions across multiple noise scales. Given
a sample z, the score is defined as so(z) = V; logpg(x), which measures devi-
ations from typical data points. Instead of computing second-order derivatives,
DSM approximates score matching using noisy samples. DSM objective is:

1, i
Ipsm(0) = Ezng, (212) 2p(a) [2”5‘9(@ — Vilog qa(:vla:)ﬂ : (1)

MSMA extends DSM by incorporating multiple noise scales, allowing finer-
grained atypicality detection. MSMA objective is:

L
Jusma (0) = Z Wiz q,, znp(z)

3 [3ll0(d.00 = e logan(@la)l?] . @)

Spatial-MSMA Framework: Spatial-MSMA conditions the estimation of
score norms on patch-wise spatial context. Given an image patch x,, the model
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estimates the log-likelihood of its score norm as logpg(||s(x,)|| |2), where z en-
codes spatial metadata or global image features. This enables the model to as-
sociate atypicality with specific spatial locations, enhancing interpretability.
Atypicality maps: The patch-wise atypicality likelihood yields a voxel-
wise atypicality map, which captures the likelihood of encountering the observed
patch (with its shape, size, and intensity) at the given location conditioned on the
rest of the image. This atypicality map can be visualized as a heatmap (see Fig
3). These heatmaps capture atypicality in the individual image space, but can be
summarized across images via deformable registration into a prior template space
with existing regional definitions. Here, we map individual atypicality maps into
MNI-space and summarize regional atypicality within AAL regions by computing
the median percentile atypicality relative to the distribution of typical data.

3.2 Structured Mapping of Brain Phenotypes

The Growing Hierarchical Self-Organizing Map (GHSOM) is a neural network
model designed to adaptively represent the hierarchical structure of complex
data. GHSOM dynamically adjusts its architecture during training, creating a
multilayered structure to reflect data characteristics at various levels of detail [4].

The GHSOM begins with a single unit at level 0, representing the entire
input space. The quantization error (QE) for this unit is computed as QE =
= Zfil |lx; — w|| where x; are the input vectors, w is the model vector of the
unit, and N is the total number of input samples. To determine the need for map
expansion, the Mean Quantization Error (MQE) is calculated for each map as the
average QE of its units: MQE = % Zgzl QE,, where U is the number of units in
the map. The local growing criterion ensures that individual units representing
diverse subsets of data expand into new maps. A map grows if its MQE exceeds a
fraction of the parent map’s QE, scaled by w;: MQE,,, > w;-QE,,en¢- The global
growing criterion is met if the QE of a unit exceeds a fraction of the QE at the
top level, scaled by the parameter wg: QE > wgy - QE ). The parameters w, and
w; control the depth and granularity of the hierarchical structure, respectively.
Smaller wy values result in deeper hierarchies, while larger w, values create more
extensive maps at each level. In contrast, smaller w; values lead to sparse maps,
and larger w; values promote deeper hierarchies.

When a unit satisfies the local growing criterion, a new map is initialized. The
model vectors of the new units are initialized to maintain the topology of the
parent map by averaging the neighboring units’ vectors. The training process
for each map uses the standard SOM procedure, followed by the insertion of
additional rows or columns. The training process continues until all units meet
the stopping criteria: MQE,, <w;-QE, ..,y and QE < wgy-QE. The overall
framework of our PRADA approach is illustrated in Figure 1.

4 Results

MSMA and GHSOM were trained on typical subjects, and then atypical samples
were mapped by assigning each to its nearest SOM unit, as shown in Fig. 2. wy;
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Fig. 2. Trained Growing Hierarchical Self-Organizing Map (GHSOM) for phenotype
representation. The first level organizes primary phenotypes, while the second level
refines each phenotype into more detailed subgroups. The GHSOM is trained using
typical subjects, and atypical samples are overlaid by mapping each to its nearest unit.
Red stars indicate ASD samples. Phenotypes are sorted by the number of ASD samples.

and wy were 0.034 and 0.008, respectively, for consistent leaf node sample cov-
erage. From the learned phenotype representations, we selected the two most-
frequent SOM units for further analysis. These represent distinct ASD pheno-
types with overlapping but also distinct patterns of atypicality as the atypicality
percentile heatmaps in Fig. 3 illustrate. Each of these 2 phenotypes also captures
significant correlations between regional brain atypicality and behavioral mea-
sures. While there is insufficient space here to discuss all observed associations,
we highlighted some of the results below.

The first, most frequent ASD phenotype in our sample is characterized by
structural brain atypicalities related to social-affective and sensory processing.
We observed the strongest significant correlation between the CBCL-Social Prob-
lems Score and the left superior temporal gyrus atypicality (R = 0.791). The su-
perior temporal gyrus is essential for language processing and social perception.
The CBCL-Total Problems Score was associated with the left superior temporal
gyrus (R = 0.694) and also the left posterior cingulate gyrus (R = 0.702), a
region involved in self-referential thinking and social cognition [15,27]. Other
notable correlations include the ADOS-Derived Social Affect Total, assessed at
an earlier age of 3 years, with the left posterior cingulate gyrus (R = 0.764)
and right superior temporal gyrus (R = 0.714), reinforcing the role of these re-
gions in social cognition [17]. Surprisingly, the CBCL-Attention Problems Score
showed a negative correlation with the right Lobule VI of the cerebellar hemi-
sphere (R = —0.761), indicating that also contrasting patterns of atypicality can
be observed within a phenotype.

The second phenotype shows structural atypicality associations related to ex-
ecutive function and motor assessments. The strongest correlation was observed
between the ADOS Restricted and Repetitive Behavior (RRB) Total measured
at 3 years and the right superior parietal gyrus (R = 0.946). This region plays
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Fig. 3. Correlation between brain atypicality and behavioral measures for two pri-
mary phenotypes. Scatter plots show the strongest correlations for each phenotype
(top: Phenotype 1/blue, bottom: Phenotype 2/orange) with both phenotypes plotted.
Corresponding brain heatmaps display the median percentile atypicality relative to the
distribution of typical data, with higher atypicality percentiles highlighted in red (80%)
to yellow (100%). Yellow arrows indicate the plotted regions of interest.

a role in visuospatial and sensorimotor integration, functions that are often al-
tered in ASD [17]. Significant correlations were also found between CBCL-Total
Problems Score and the right inferior frontal gyrus, triangular part (R = 0.917),
a region involved in response inhibition and executive control [23]. Other no-
table findings include correlations between the ADOS Restricted and Repetitive
Behavior Total at 3 year and both the left thalamus (R = 0.837) and the left
dorsolateral superior frontal gyrus (R = 0.837), regions associated with motor
functioning. [17]. Additionally, CBCL-Thought Problems Score was linked to
the right Crus II of the cerebellum (R = 0.756), reinforcing the cerebellum’s
involvement in ASD [25].

5 Conclusion

This work presents PRADA, a method for the exploration of structural phe-
notypes of neurodevelopmental disorders, here autism spectrum disorder, by
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utilizing structural brain MRI data to identify image patterns of atypicality. Us-
ing score-based out-of-distribution quantification, SOM-based manifold & clus-
ter learning approaches, PRADA identified two major ASD phenotypes with
distinct structural associations between structural atypicality and behavioral
traits. These phenotypes and their associations provide novel insights into po-
tential mechanisms underlying ASD-related challenges.

For these phenotypes, we observed both overlapping and distinct structural
regions of atypicality and associations with behavior and cognition. Phenotype
1 is characterized mainly by social-affective and sensory processing atypicality,
whereas Phenotype 2 involves executive function and motor atypicality.

A limitation of our approach is the limited level of structural interpretability.
While our framework provides the presence, locality, and degree of atypicality of
brain structures, it does not indicate whether the detected atypicality is observed
due to size, shape, or intensity effects at the observed location in the MR image.

While the study offers valuable insights, limitations include the test sam-
ple size, which may affect generalizability and the number of detectable brain
phenotypes. Future work involves extending this approach to longitudinal and
multimodal data, such as functional connectivity or genetics, and ablation stud-
ies to compare individual components of PRADA.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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