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Abstract. Hyperpolarized '2°Xe lung magnetic resonance imaging (MRI)
offers a method for visualizing human lung function. However, its long
imaging time limits widespread research and clinical adoption. Deep
learning has shown significant potential in addressing undersampled MRI
reconstruction challenges. Yet, the clinical novelty of hyperpolarized *??Xe
lung MRI results in a particular lack of raw k-space data. To address
this, we propose a Noise-Controllable Complex-Valued Diffusion Model
(NC-CDM) to augment the available data from limited clinical training
set. Specifically, complex-valued convolutional kernels replace traditional
ones, enhancing feature extraction and data utilization efficiency by
learning rich representations from k-space. In addition, a noise-controllable
module is introduced to mitigate estimation biases caused by thermal
noise during MRI acquisition in the training phases. Experiments com-
pare the proposed NC-CDM with other state-of-the-art models. Fréchet
Inception Distance (FID) and Inception Score (IS) metrics show that our
method obtains higher image quality. The generated data, mixed with
real data, are subsequently applied to downstream MRI reconstruction
task using two deep learning-based MRI reconstruction methods: CasNet
and KIKI-net. The results show that reconstruction networks trained on
our generated data exhibit superior reconstruction performance.

Keywords: Hyperpolarized 2°Xe MRI - k-Space Data Generation - Dif-
fusion Model.

1 Introduction

Hyperpolarized 129% e lung MRI provides a non-invasive and non-ionizing method
for evaluating pulmonary function, showing potential for early detection and
treatment of lung diseases [1]. However, due to the decay of hyperpolarized
129X e magnetization, faster image acquisition is necessary for practical clinical
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Fig. 1. The framework of our work comprises two steps: (a) Using the proposed Noise-
Controllable Complex-Valued Diffusion Model (NC-CDM) to generate MRI k-space
data. These data are then mixed with real data to create the training set for down-
stream reconstruction task. (b) The reconstruction task is used as a downstream task
to validate the effectiveness of the generation methods.

application [2, 3]. The integration of deep learning techniques has proven highly
successful in enhancing the process of MRI reconstruction[4, 5]. Nevertheless,
its use in medical imaging is limited by the scarcity of data [6]. This limita-
tion is particularly significant in the emerging field of hyperpolarized 129% e lung
MRI, where raw k-space data for reconstruction research is lacking [7]. Recent
advancements in denoising diffusion probabilistic models (DDPM) have shown
remarkable success in data synthesis tasks [8-15]. Specifically, DDPM have been
utilized to address data scarcity in diagnostic tasks by reliably generating images
with specific data structures [9] and pathological features [10], offering a novel so-
lution for data augmentation. However, current generative studies mainly focus
on generating spatial domain data, with limited research on frequency domain k-
space data generation|7]. Additionally, existing studies have predominantly used
a training set with high signal-to-noise ratios, overlooking the impact of noise
on the generated samples [16, 17].

To alleviate the problem of data dependence in undersampled hyperpolar-
ized ??Xe lung MRI reconstruction, this study introduces a Noise-Controllable
Complex-Valued diffusion model (NC-CDM). This model is specifically designed
to synthesize k-space data, incorporating crucial phase information in the pro-
cess, as illustrated in Fig. 1 (a). Unlike conventional DDPM [18], our approach
utilizes complex-valued convolution kernels [19] to better capture complex-valued
space information, thereby improving feature extraction and utilization of complex-
valued data. Furthermore, Gaussian noise is present in the measured k-space
due to thermal fluctuations stemming from hardware and background factors
[16]. The presence of thermal noise in measurements introduces deviations in
the noise estimation during the reverse process of the diffusion model. These
deviations become particularly pronounced as the process approaches the noise-
free data distribution. Consequently, when MRI measurements are affected by
thermal noise, the DDPM-based data generation methods may produce poor-
quality results or even fail[7,16]. To mitigate this issue, we have developed a
noise-controllable module to adjust the predicted noise of the diffusion model
during training and facilitate noise controlled data generation during the sam-
pling phase. To validate the effectiveness of the generated data in the downstream
task, we employed a mixed dataset (consisting of both real and generated data)
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to improve the performance of undersampled hyperpolarized **Xe lung MRI
reconstruction, as depicted in Fig. 1 (b). Our contribution are three-fold:

— To the best of our knowledge, this is the first time numerous virtual k-space
data have been directly synthesized using a diffusion model for the purpose
of training a follow-up model for undersampled hyperpolarized 129% e lung
MRI reconstruction.

— The proposed NC-CDM employs complex-valued convolutions for effective
feature extraction and includes a noise-controllable module to mitigate ther-
mal noise.

— Integration of the data generated by the NC-CDM into the training set
results in an improvement in the accuracy of reconstruction task on the test
set. This demonstrates the efficacy of generated data in downstream task.

2 Method

2.1 Overview of the Proposed Method

The single-coil k-space data,  from hyperpolarized *°Xe lung MRI data, is
always corrupted by thermal noise  ~ N (u, 02), where z,u,0 € C. Let g € C
be the clean k-space data, then © = x¢+ 7. Fluctuations in noise levels affect the
predetermined noise for training a diffusion model, leading to decreased perfor-
mance. To address this issue and enhance the quality of generated k-space data,
we propose the Noise-Controllable Complex-Valued Diffusion Model (NC-CDM),
which is based on a standard UNet architecture within the DDPM. The data is
first preprocessed to deal with the thermal noise. Then, traditional convolution is
replaced with the complex-valued convolution, and a noise-controllable module
is incorporated to address the predicted noise in the diffusion model.

Data Preprocess. To mitigate the impact of thermal noise in the subsequent
calculations of NC-CDM, the g is eliminated from z during preprocessing, as
shown in Fig. 2 (b). The z is first subjected to inverse Fourier transformation f’
to the image domain y = f’(x), followed by the calculation image domain noise
from the background in the four image corners. Subsequently, the image domain
noise is transformed back into k-space noise n = ng + jn;, where the real noise is
nr ~ N (pr,0%) and imaginary noise is 7y ~ N (uz, 07), respectively. To finalize
preprocessing, we subtract the mean noise (ug for real, p; for imaginary) from
the corresponding parts of the image. The processed data, x, serves as NC-CDM
input at ¢t = 0 ,where x) = x — u =29 +7n',7 ~ N(0,0?) .

Noise Predictor of Complex-Valued Diffusion Model. Fig. 2 (¢) presents
the noise prediction framework of the NC-CDM at step ¢. In the NC-CDM, the
input is the k-space data. Through the optimization of the loss function (Eq. (3)),
the output of the NC-CDM is the predicted noise at step t. After T steps, by
sampling from the noise assigned by the output of the network, we can derive the
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Fig. 2. Detail of proposed Noise-Controllable Complex-Valued Diffusion Model (NC-
CDM). (a) Flowchart of proposed NC-CDM: NC-CDM generates k-space data through
diffusion forward and reverse processes. (b) Data preprocess: Performing inverse Fourier
transformation on x to obtain y, estimating background noise from the real and imagi-
nary parts of y in all four corners, employing Fourier transform to get n on k-space and
subtracting p from z. (c) Noise predictor of NC-CDM: Utilizing complex-valued con-
volution and correcting for the estimated noise at time step t. x; is the complex-valued
input at step t.

generated data. In the NC-CDM, the complex-valued denoise network utilizes
a UNet-based model. It consists of three modules, including encoder, decoder,
and skip connection. In our complex-valued diffusion model, all convolutions
are carried out through complex-valued operations to extract detailed feature
representations in a complex-valued space. The complex-valued convolution can

be formulated as:
mtwea) =¥ % |[3] )

where Re() and Im() represent the real and imaginary data, respectively. a is
the real part, and b is the imaginary part. The convolution kernel denotes as
W = X + jY, where X represents the real convolution, and Y represents the
imaginary convolution. ® is the convolutional operator.

Noise-Controllable Module. The noise of hyperpolarized '?°Xe in lung MRI
is high. This thermal noise infiltrates the diffusion model-based generation pro-
cess via the data consistency term, disrupting the predefined noise schedule
used for training the reverse process. For example, at time step ¢, ; = v/agzo +
v 1 — até; with clean input zg and DDPM parameter «, due to the influence of
intrinsic thermal noise 7/, the forward process from z, to z; is rewritten as:

Ty = w1 + V1 — oy

2
:\/Oé=t$o+\/l—O_(téTt—F\/O_é_t?']l,’f]/NN(o,U2) ( )
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The difference between them is y/&;n’. Furthermore, this difference will in-
crease as t decreases. Consequently, diffusion model-based generation methods
may experience sub-optimal performance or even failure when the thermal noise
of MRI is not negligible. To address this issue, we propose an explicit noise con-
trol module during the diffusion process. This module introduces a A; into the
reverse process to correct errors from the training stage. In simple terms, we use
A+ to attenuate the predicted noise, and the loss function is rewritten as:

V1i—a
V1—0a; + oo

Lot = Epyennon |6 = Ao (@0, O] A = (3)

The backward process can be written as follows:

1 1-
ro = <x - \/%se (2, t) + \/0717> g~ N(0,07)  (4)

Tg = To+ g (5)
where x4 is the generated image, pgy and o, are the mean and variance that
control the generated image.

2.2 Evaluation

The Fréchet Inception Distance (FID) [20] and Inception Score (IS) [21] are com-
monly used to assess the visual quality of generative models. However, these met-
rics can unfairly penalize non-GAN models, and IS may yield overly optimistic
results for methods with sampling modifications. To comprehensively evaluate
the impact of synthetic samples on downstream task, we trained CasNet [4] and
KIKI-Net [5] on a training set comprising a mixture of real and generated im-
ages. CasNet is a network specifically designed for reconstructing hyperpolarized
129X e lung MRI, while KIKI-Net is a general network for reconstructing mag-
netic resonance images. The networks were trained for image reconstruction with
acceleration factors (AF) of 4 and 6, and their performance was evaluated on a
test set of real images using Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM). Our method was extensively compared with StyleGAN [22],
VAE [23], DDPM [18], and DDIM [24] in terms of image generation similarity
and reconstruction accuracy against real images. The NC-CDM involves generat-
ing in the k-space domain, as opposed to directly generating time-domain images
as seen in other approaches. The NC-CDM demonstrates higher reliability and
wider acceptance compared to recently proposed networks.

2.3 Implementation Details

The model is trained using a batch size of 16, with input images resized to
96 x 96. The SGD optimizer is employed with an initial learning rate of 0.0001
for training over 3000 epochs. For the training of CasNet and KIKI-net, we
utilize the SGD optimizer with an initial learning rate of 0.001 for 200 epochs.
The source code is available at https://github.com/TmpAccount25/NC_CDM.



6 L. Han et al.
3 Experiments

Dataset. In the study, a total of 94 subjects (including healthy subjects and
patients) were enrolled, all providing informed consent. Pulmonary 129% ¢ imag-
ing parameters included a 3D bSSFP sequence with a matrix size of 96 x 84 and
24 slices. To address the impact of edge information, only the 16 middle slices
from each subject were selected for model training and validation. The dataset
was divided by subjects, with 75 patients randomly selected as the training set
and the remaining 19 patients as the test set. The generation model was trained
on the training set and evaluated on the test set. Subsequently, the models for
downstream reconstruction task was trained by mixing the generated data with
samples from the training set, and then tested on the test set.

Comparisons with State-of-the-Art Methods. A comparison with state-of-
the-art methods is presented in Table 1. Mixing images generated by StyleGAN
and VAE with real images did not improve the reconstruction accuracy com-
pared to the baseline (Real Image), due to poor reconstruction quality and sig-
nificant distribution mismatch with real images. The StyleGAN model exhibited
the most significant decline in performance when accelerated by a factor of six,
with a decrease of 2.35 in PSNR and 0.1030 in SSIM, while VAE’s performance
decrease was less pronounced. In contrast, DDPM and DDIM showed minor im-
provements in accuracy under an AF of 4 in CasNet. Specifically, DDPM and
DDIM demonstrated increases of 1.6 and 1.16 in PSNR, and 0.0163 and 0.0203
in SSIM, respectively. When an AF of 6 was applied, DDPM and DDIM achieved
increases of 1.09 and 1.56 in PSNR, respectively, and improvements of 0.0872
and 0.0921 in SSIM, respectively. However, under the AF of 6, there was no
significant improvement in performance for DDPM and DDIM. Our proposed
method outperformed other approaches, achieving an FID score of 110.12 and an
IS score of 2.411, which suggests a closer match between the generated samples
and real sample distribution. Furthermore, our method excelled in the recon-
struction task, showing improvements in PSNR by 3.81 and 3.28, and in SSIM

Table 1. Quantitative evaluation was conducted on the test set. The first line presents
the reconstruction results using only real images as the training set, serving as the
baseline. The highest scores are highlighted in bold.

Down-stream task (MR Reconstruction)

CasNet KIKINet
Method FID IS i <6 < <6
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Real Image — — 29.71 0.8561 24.05 0.6222 31.8 0.8452 26.48 0.7821

StyleGAN 204.55 1.112 28.89 0.8481 23.61 0.6125 30.29 0.8722 24.13 0.6791
VAE 189.82 1.320 29.32 0.8699 23.72 0.6013 30.73 0.8791 25.72 0.7195
DDPM  160.74 2.091 31.31 0.8724 25.14 0.7094 32.31 0.8940 26.48 0.7871
DDIM  163.70 2.101 30.87 0.8764 25.61 0.7143 32.10 0.8900 26.56 0.7644
Ours 110.12 2.411 33.52 0.9078 27.33 0.8515 34.21 0.9205 30.79 0.8711
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Fig. 3. Visual result of the generated data. To better illustrate the quality of the
generated images, we present the generated k-space data, which has been transformed
into the image domain using inverse Fourier transformation. The final row represents
the real data.

by 0.0517 and 0.2293 under the AF of 4 and 6 in CasNet, respectively. Similarly,
in KIKI-net under the AF of 4, PSNR improved by 2.41 and 4.31, and SSIM
by 7.53 and 8.9 under the AF of 6. These results demonstrate the enhanced
adaptability of proposed method to downstream task, addressing the challenge
of limited samples. The visual results of images generated using different models
are shown in Fig. 3. To visually showcase the quality of the generated images, we
display the k-space data converted into the image-domain using inverse Fourier
transformation. Our method produces samples that closely resemble real samples
in terms of image contrast and structural details.

Ablation Study: To evaluate the efficacy of the proposed complex-value net-
work with a noise-controllable module in enhancing data quality generation, sev-
eral ablation experiments were conducted. Table 2 shows all the results of these
ablation studies. The initial row represents the baseline DDPM, which is the
DM network without complex-valued convolutions and noise-controllable mod-
ule. Firstly, replacing traditional convolutions with complex-valued convolutions
led to enhancements in all metrics compared to the baseline network, showcasing
the capability of complex-valued convolutions in extracting intricate information
beyond temporal features. Moreover, the incorporation of the noise control mod-
ule notably boosted the accuracy of all metrics, with FID of 110.12 and IS of
2.411. When employing CasNet with the AF of 4 and 6, SSIM improved from
0.8941 to 0.9078 and from 0.7909 to 0.8515, respectively. Furthermore, when uti-
lizing KIKI-net with the AF of 4 and 6, SSIM improved significantly, from 0.9033
to 0.9205, and from 0.7821 to 0.8711, respectively. The reconstruction accuracy
under different acceleration factors also reached its peak. This underscores the
module’s effectiveness in generating low signal-to-noise ratio images. To verify
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Table 2. Quantitative evaluation across different modules. The highest scores are
highlighted in bold.

Down-stream task (MR Reconstruction)

Method CasNet KIKINet
FID IS x4 X6 x4 X6

Complex NC PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
X X 160.74 2.091 31.31 0.8724 25.14 0.7094 32.31 0.8940 26.48 0.7871
v X 157.81 2.196 32.21 0.8941 26.21 0.7909 32.98 0.9033 27.70 0.7821
v v 110.12 2.411 33.52 0.9078 27.33 0.8515 34.21 0.9205 30.79 0.8711
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Fig. 4. Ablation of the number of generated images by proposed Noise-Controllable
Complex-Valued Diffusion Model (NC-CDM).

the influence on number of generated image on the downstream task, Fig. 4
demonstrates the correlation between the quantity of artificially generated data
integrated into the raw data and the reconstruction accuracy. With an increase
in the number of generated images, CasNet and KIKI-net attain PSNR values
of 33.52 and 34.21 for the reconstruction task with an AF of 4, and 27.33 and
30.79 for the reconstruction task with an AF of 6.

4 Conclusion

In conclusion, this study introduces an innovative approach to mitigate sample
scarcity in medical image analysis. Unlike traditional image-domain generation
methods, we utilize a complex-valued diffusion model to directly synthesize k-
space data for hyperpolarized 2Xe lung MRI. To mitigate the effects of thermal
noise in MRI with low signal-to-noise ratios, a noise-controllable module is in-
tegrated, which reduces noise impact during the forward process and enhancing
the alignment of generated samples with real data distributions in contrast and
tissue detail. We evaluate the proposed method’s efficacy by comparing it with
state-of-the-art techniques using FID and IS metrics and assessing its impact on
downstream task through validation reconstructions in acceleration factors of
4 and 6 with CasNet and KIKI-Net, respectively. Experimental results demon-
strate the superior performance of our approach, highlighting its potential for
downstream applications and advancing image synthesis techniques. Although
the hyperpolarized '?°Xe lung MRI data we used were collected using a single
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coil, the proposed method is not limited to the MRI acquisition method and is
applicable to the acquisition of multicoil and single coil MRI.
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