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Abstract. Considering the commonly existing domain shifts and la-
bel scarcity, single-source domain generalization (SDG) is a crucial and
promising topic in medical image segmentation. SDG trains the model
on one source domain and aims for generalization on the unseen tar-
get domain. However, previous methods rely on the quantity of train-
ing samples and perform poorly when only a few labeled training vol-
umes are available, limiting the effective applicability in clinical practice.
Thus, we concentrate on the challenging SDG setting with extremely
few annotated samples and propose a Medical Dual-encoder framework
(MEDU). A dual-encoder U-shaped network incorporates two different
encoders and fuses features via simple yet effective layers for learning
representative features. We integrate pretrained SAM2 encoder with se-
mantic knowledge for a proper initialization and resisting overfitting,
proving effective in training with limited supervision. Furthermore, we
introduce a perturbation consistency training strategy with perturbation
operations and hierarchical consistency to learn domain-invariant fea-
tures and alleviate discrepancies between training and inference. MEDU
exceeds existing advanced methods in three challenging cross-domain
settings concerning SDG with extremely few annotations. For example,
on Abdominal MRI-CT, MEDU attains a Dice score of 81.75% with only
three labeled training volumes, achieving an improvement of 12.60%. Our
source code is available at https://github.com/wrf-nj/MEDU.

Keywords: Domain Generalization · Medical Image Segmentation · Ex-
tremely Few Annotations.

1 Introduction

Medical image segmentation [1,2,3], which identifies regions such as organs and
tumors, is of great significance in medical image analysis. Recently, data-driven
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Fig. 1: Motivation of our proposed MEDU. (a) On Abdominal MRI-CT, previous
methods rely on the number of labeled training volumes, while MEDU obtains
a good performance even with extremely few labeled training volumes. (b) SDG
with extremely few annotations (e.g., the model is trained by only 3 labeled
volumes on Abdominal MRI and tested on Abdominal CT).

deep learning methods have witnessed substantial progress [4], yet they en-
counter intrinsic issues concerning distribution shifts [5] and label scarcity. Specif-
ically, inconsistencies (e.g., imaging modalities) in the image acquisition process
often result in domain distribution shifts [6,7]. In addition, pixel-wise labels for
medical images are extremely scarce as manual annotation requires time invest-
ment and expertise [3]. These two problems hinder the effective implementation
of medical image segmentation in clinical practice.

Previous works attempt to address distribution shifts via domain generaliza-
tion (DG) [5,8]. Conventional DG [9,10] trains the model on multiple source do-
mains and tests it on the unseen target domain, namely multi-source DG. To fur-
ther ease label scarcity and privacy issues caused by involving multiple sources,
single-source DG (SDG) [6,7,11] trains the model using one source domain and
aims for generalization in unseen target domain(s). However, medical SDG still
requires a considerable amount of training data (14, 21, 35 3D volumes for Ab-
dominal MRI-CT, Abdominal CT-MRI, Cardiac bSSFP-LGE respectively) to
obtain competitive performances [7]. Given the difficulty of annotation, ensur-
ing generalization with scarce annotations remains a crucial topic.

We investigate the generalization ability of existing methods [6,7,12,13] in
SDG with few annotations. As shown in Fig. 1 (a), we progressively reduce the
number of training volumes by 20% per step and observe a significant tendency
of performance degradation for previous methods, particularly when only a few
labeled samples (i.e., 3 volumes, accounting for 20%) are available on Abdom-
inal MRI-CT [14,15]. This issue arises from overfitting to the source domain
with limited labeled training data and insufficient learning of domain-invariant
semantic features. Notably, as the knowledge of pretrained SAM2 helps resist
overfitting, SAM2-UNet [13] performs better with fewer samples (100% vs. 80%).
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When the training volumes are extremely limited, SAM2-UNet still gains poor
performance. As achieving generalization with limited labeled data remains a
challenge, we concentrate on SDG with extremely few annotations (Fig. 1(b)).

In medical image segmentation, SDG with extremely few annotations con-
fronts two main challenges: limited annotated samples hamper the effectiveness
of training and domain shifts further amplify the difficulty of generalization. For
segmentation, many medical DG methods [6,7,9] build backbones based on U-
Net [16], which utilizes multiscale features to capture semantics comprehensively.
However, U-Net is not effective enough when trained on limited labeled samples
and struggles to model long-range dependencies due to the locality of convolu-
tions [17,18]. A natural solution is to integrate visual foundation models, which
could serve for a proper initialization and help to reduce overfitting. SAM and
SAM2 [19,20] are visual foundation models pre-trained on large-scale datasets
and built upon Transformer-based architecture with advantages in modeling
global relationships. Although exhibiting strong performances in downstream
tasks [13,21,22], SAM and SAM2’s potential in medical DG remains largely un-
explored. Thus, we unify SAM2 and U-Net for effective training with limited
supervision and design a training strategy to overcome domain shifts.

We propose a Medical Dual-encoder framework (MEDU), which incorpo-
rates a dual-encoder U-shaped network for training with extremely few anno-
tations and a perturbation consistency training strategy for learning domain-
invariant features. A dual-encoder U-shaped network employs two distinct en-
coders (CNN-based encoder and Transformer-based encoder utilizing SAM2 [13])
and feature fusion modules with simple yet effective layers, integrating the ca-
pability of pretrained SAM2 for a proper initialization and resisting overfitting.
Besides, a perturbation consistency training strategy is introduced with pertur-
bation operations and hierarchical consistency for generalization. Perturbation
operations utilize intensity transformations [12] and dropout to alleviate over-
fitting. Hierarchical consistency is employed on predictions acquired from mul-
tiscale features, which encourages the model to learn domain-invariant features
and mitigates the differences between training and inference [23].

In this paper, three main contributions are listed as follows.

– A medical dual-encoder framework unifying both SAM2 and U-Net is pro-
posed to solve single-source domain generalization with extremely few anno-
tations in medical image segmentation.

– A novel dual-encoder U-shaped network with two encoders (Transformer-
based and CNN-based) and feature fusion modules integrates features to
learn semantic representations with few training samples.

– A perturbation consistency training strategy with perturbation operations
and hierarchical consistency encourages the model to capture domain-invariant
features and mitigates discrepancies between training and inference.

Extensive experiments conducted on three cross-domain settings demonstrate
the effectiveness of our proposed MEDU. For example, on Abdominal MRI-CT,
MEDU achieves a Dice score of 81.75% when trained with only three labeled
volumes, yielding an improvement of 12.60% over the previous advanced method.
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Fig. 2: Overview of our proposed MEDU, employing a dual-encoder U-shaped
network and a perturbation consistency training strategy.

2 Method

SDG with extremely few annotations trains the model with limited labeled sam-
ples on one source domain and aims for the generalization in the unseen target
domain. As illustrated in Fig. 2, we propose a medical dual-encoder framework
(MEDU) with a dual-encoder U-shaped network and a perturbation consistency
training strategy for SDG with extremely few annotations.

2.1 A Dual-encoder U-shaped Network

A dual-encoder U-shaped network is proposed, inspired by [19,13,16], to unify
SAM2 and U-Net for enhanced representational capability with extremely few
annotations. It mainly comprises scale adjustment, two encoders, feature fusion
modules (FFMs), and one decoder. Transformer-based encoder and CNN-based
encoder each consist of four layers of blocks, referred to as TEB and CEB re-
spectively. Transformer-based encoder utilizes frozen Hiera blocks pre-trained
by SAM2 and inserted adapters for fine-tuning [13], which facilitates model ini-
tialization and overfitting mitigation. CNN-based encoder leverages convolutions
[16,9] for learning and follows scale adjustment. After encoding the inputs, four
FFMs, which share similar structures but operate at different scales, are utilized
to fuse features from the above two encoders. The decoder consists of three lay-
ers, each containing receptive field blocks and Convolution-Batch Normalization-
ReLU combinations, while simultaneously generating predictions [13].

Scale Adjustment. To align input scales of CNN-based encoder with those
of Transformer-based encoder for subsequent feature fusion, scale adjustment is
introduced. It also functions as encoding layers and mainly utilizes convolutions,
comprising a CNN-based encoder block (CEB) without max-pooling, followed
by another CEB. As depicted in Fig. 2, CEB utilizes Max-pooling, Convolution,
Batch Normalization, and ReLU, following U-Net [16,9].
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Feature Fusion Module (FFM). Four FFMs with similar structures are
employed to fuse multiscale outputs from the two different encoders. For the
i-th (i ∈ {1, 2, 3, 4}) layer, F i

t and F i
c ∈ RB×C×H×W denote the output fea-

tures of Transformer-based encoder and CNN-based encoder respectively. We
first concatenate F i

t and F i
c in the second dimension to produce the hybrid fea-

ture F i
h ∈ RB×2C×H×W . A learnable linear function Linear(·) : RB×2C×H×W →

RB×C×H×W is employed to weight F i
h, perform dimension reduction, and gener-

ate F i′

h . Subsequently, F i′

h is passed through a projection P (·) : RB×C×H×W →
RB×C×H×W with two layers, each consisting of Convolution, Batch Normal-
ization, and ReLU [24]. P (·) preserves feature size while assisting in learning
semantic representations. FFMs function as a component for effective encoding
as well as learning representative semantic features.

The proposed dual-encoder U-shaped network fuses features from two distinct
encoders to learn semantic representations, leveraging the pretrained SAM2 for a
good initialization and easing overfitting in the source domain. Thus, it exhibits
effectiveness when trained with few annotated samples.

2.2 A Perturbation Consistency Training Strategy

A perturbation consistency training strategy is introduced for generalization,
which utilizes Perturbation Operations to produce variations and Hierarchical
Consistency to enforce consistency in predictions of the same input under varying
transformations and alleviate discrepancies between training and inference.

Perturbation Operations. Intensity perturbation is applied on images by
randomly stacking multiple transformations [12], which introduces diverse styles.
For the batch of input X, we utilize intensity perturbation twice to produce aug-
mented batches X

′
and X

′′
. We concatenate X

′
and X

′′
in the batch size dimen-

sion and forward the concatenated batch. Additionally, channel-wise dropout is
applied, reducing the dependence on specific channels. These two operations
introduce variations and reduce the risk of overfitting in the source domain.

Hierarchical Consistency. Hierarchical consistency promotes the learn-
ing of domain-invariant features while encouraging the model to be invariant to
domain-specific information. In addition, since perturbation operations are dis-
abled in the inference process, hierarchical consistency also mitigates the gap be-
tween training and inference [23]. Specifically, three predictions Pi (i ∈ {1, 2, 3})
are produced by multiscale features. As the forwarded input is a concatenation
of X

′
and X

′′
, Pi is divided into two parts P

′

i and P
′′

i , which corresponds to
the same input X. Consistency loss Li

con is applied to enforce consistency in
predictions of the same input. We utilize hierarchical consistency Lcon for deep
supervision. Li

con and Lcon are calculated as follows:

Li
con =

1

2
(KL(P

′

i ||P
′′

i ) +KL(P
′′

i ||P
′

i )), (1)

Lcon =
1

3

3∑
i=1

Li
con, (2)



6 R. Wang et al.

where KL(·) denotes Kullback-Leibler divergence [25]. The overall training loss
L is calculated as follows:

L = Lce + Ldice + αLcon, (3)

where Lce denotes cross-entropy loss, Ldice denotes Dice loss, and hyper-parameter
α denotes the weight of Lcon.

3 Experiment

3.1 Dataset and Implementation Details

Experiments are conducted on three cross-domain SDG settings: cross-modality
Abdominal MRI-CT [14,15] from T2-SPIR MRI to CT, cross-modality Abdom-
inal CT-MRI [14,15] from CT to T2-SPIR MRI, and cross-sequence Cardiac
bSSFP-LGE [26] from bSSFP MRI to LGE MRI. Abdominal T2-SPIR MRI
contains 20 3D volumes and Abdominal CT contains 30 3D volumes. Cardiac
bSSFP and Cardiac LGE each contain 45 3D volumes. For each setting, the
model is trained on the single source domain and tested on the unseen target
domain. The initial dataset split follows [6,7]. In this paper, to perform exper-
iments in SDG with extremely few annotations, we utilize only 20%, 20%, and
8% (3, 4, and 3 3D volumes) of the initial training set to train the model on Ab-
dominal MRI-CT, Abdominal CT-MRI, and Cardiac bSSFP-LGE respectively.

Implementation details are listed as follows. Experiments of our method are
implemented by PyTorch and NVIDIA RTX A6000. We utilize the AdamW
optimizer with the initial learning rate of 0.0003 and apply cosine decay. The
batch size is set as 20. For all three settings, the model is trained for 1500
epochs. We evaluate our method at the final epoch with Dice score (%). Hyper-
parameter α in Eq. (3) is set as 15. For the proposed perturbation consistency
training strategy, intensity perturbation (e.g., Brightness) [12] is adopted and
the dropout rate of channel-wise dropout is set as 0.5.

3.2 Experimental Results

We compare the experimental results of our proposed MEDU with existing ad-
vanced methods (U-Net [16,9], CSDG [6], AugSeg [12], SLAug [7], and SAM2-
UNet [13]) to prove the effectiveness on all three settings. Geometry transfor-
mations [6] are employed on all the methods as the common preprocessing op-
erations. Table 1, 2, and 3 summarize the results on Abdominal MRI-CT, Ab-
dominal CT-MRI, and Cardiac bSSFP-LGE respectively. MEDU outperforms all
the other methods on both class and average results, as evaluated by the Dice
score. Specifically, for Abdominal MRI-CT and Abdominal CT-MRI, MEDU
obtains the Dice score of 81.75% and 85.51%, gaining improvements of 12.60%
and 4.19% respectively. For Cardiac bSSFP-LGE, MEDU obtains the Dice score
of 78.24%. Visualization results are shown in Fig. 3. Source and GT denote the
source domain images and ground truths respectively.
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Table 1: Comparison of results (%) on Abdominal MRI-CT.

Method ProportionVolumes Abdominal MRI-CT
Liver R-KidneyL-KidneySpleenAverage

U-Net 20% 3 75.17 12.65 6.47 5.92 25.05
CSDG 20% 3 74.53 64.80 71.76 51.78 65.72
AugSeg 20% 3 81.70 63.48 68.39 55.22 67.20
SLAug 20% 3 79.87 68.22 71.81 56.71 69.15
SAM2-UNet 20% 3 82.74 44.89 28.20 55.69 52.88

MEDU 20% 3 88.86 79.28 79.01 79.87 81.75

Table 2: Comparison of results (%) on Abdominal CT-MRI.

Method ProportionVolumes Abdominal CT-MRI
Liver R-KidneyL-KidneySpleenAverage

U-Net 20% 4 27.66 17.35 13.52 22.37 20.23
CSDG 20% 4 62.28 80.81 80.26 56.76 70.03
AugSeg 20% 4 78.26 77.39 81.50 73.73 77.72
SLAug 20% 4 84.11 83.41 81.39 76.38 81.32
SAM2-UNet 20% 4 52.66 66.34 42.09 47.03 52.03

MEDU 20% 4 87.94 88.87 85.25 79.98 85.51

Table 3: Comparison of results (%) on Cardiac bSSFP-LGE.

Method Proportion Volumes Cardiac bSSFP-LGE
LVC MYO RVC Average

U-Net 8% 3 47.35 15.24 22.60 28.39
CSDG 8% 3 47.11 23.32 33.30 34.58
AugSeg 8% 3 81.64 56.34 66.34 68.11
SLAug 8% 3 86.59 69.71 75.05 77.12
SAM2-UNet 8% 3 73.79 19.01 51.98 48.26

MEDU 8% 3 87.11 71.32 76.28 78.24

3.3 Ablation Study

As shown in Table 4, ablation study is conducted on all three settings to demon-
strate the effectiveness of two main components (the proposed dual-encoder U-
shaped network and hierarchical consistency) in MEDU. MEDU∗

CNN denotes
the dual-encoder U-shaped network that employs only CNN-based encoder and
incorporates intensity perturbation. MEDU∗

Trans denotes the dual-encoder U-
shaped network that employs only Transformer-based encoder and incorpo-
rates intensity perturbation. MEDU∗

Dual denotes our MEDU without hierar-
chical consistency. Specifically, MEDU∗

Dual obtains the Dice score of 81.41%,
85.34%, and 77.86% on three settings respectively, exceeding performances of



8 R. Wang et al.

Source           U-Net             CSDG           AugSeg           SLAug      SAM2-UNet MEDU (Ours)      GT

Fig. 3: Visualization results for Abdominal MRI-CT (top row), Abdominal CT-
MRI (middle row), and Cardiac bSSFP-LGE (bottom row) respectively.

Table 4: Ablation study on MEDU. Reported results are the average Dice score
(%) of classes on three settings. HC denotes hierarchical consistency.

Method HC Abdominal MRI-CT Abdominal CT-MRI Cardiac bSSFP-LGE

MEDU∗
CNN % 76.17 83.59 77.82

MEDU∗
Trans % 81.01 82.97 77.70

MEDU∗
Dual % 81.41 85.34 77.86

MEDU ✓ 81.75 85.51 78.24

both MEDU∗
CNN and MEDU∗

Trans. Results here prove that the dual-encoder U-
shaped network takes advantage of U-Net and SAM2 encoders while fusing ex-
tracted features to learn representative semantic features. Besides, MEDU out-
performs MEDU∗

Dual on all three settings, which proves the effectiveness of hier-
archical consistency. Hierarchical consistency encourages predictions of the same
inputs to remain consistent under various perturbations, aiding in the learning
of domain-invariant features and enhanced generalization capability.

4 Conclusion

Distribution shifts and label scarcity are two critical problems that hinder effec-
tive medical image segmentation in clinical applications. Thus, we concentrate
on single-source domain generalization with extremely few annotations in this
paper, which trains the model with extremely few labeled samples in one source
domain and aims for generalizable performances in the unseen target domain. A
medical dual-encoder framework (MEDU) is proposed to learn domain-invariant
features under limited supervision, incorporating a dual-encoder U-shaped net-
work and a perturbation consistency training strategy. A dual-encoder U-shaped
network introduces two different encoders and feature fusion modules to learn
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representative features, utilizing SAM2 for a good model initialization and help-
ing ease overfitting in the source domain. A perturbation consistency training
strategy leverages perturbation operations and hierarchical consistency to en-
hance generalization capability. Extensive experiments on three cross-domain
settings prove the effectiveness of our MEDU.
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