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Abstract. Segmentation foundation models (SFMs) hold promise for
medical image analysis, but their direct clinical application is limited by
computational cost, potentially suboptimal accuracy, and fairness con-
cerns. In this paper, we propose a novel framework to address these
challenges by distilling knowledge from a heterogeneous ensemble of
pre-trained SFMs, generating specialized, high-performance models for
domain-specific medical image segmentation. Unlike existing single-SFM
approaches, our methodology leverages the collective intelligence of di-
verse SFMs to enhance accuracy, fairness, and efficiency. A key contribu-
tion is a ground-truth-free knowledge distillation strategy using the en-
semble’s aggregate predictions on unlabeled data to minimize reliance on
manual annotation. Evaluated on a large, diverse dataset of CT and MRI
scans from 702 individuals, our distilled model significantly outperforms
individual SFMs and their ensemble average, achieving state-of-the-art
segmentation accuracy, improved fairness across demographics (sex, age,
BMI), and substantially reduced computational cost. These results of-
fer a practical paradigm for leveraging foundation models in real-world
clinical settings, mitigating key SFM limitations.
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1 Introduction

Segmentation foundation models (SFMs) have emerged as a significant devel-
opment in medical image analysis, demonstrating the potential to generalize
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across diverse anatomical structures and imaging modalities, including MRI and
CT [1-5]. Unlike traditional task-specific models, SFMs aim to provide a single
model capable of segmenting a wide variety of objects. Prominent examples in-
clude the Segment Anything Model (SAM) and its medical variant, MedSAM,
which utilize point and/or bounding-box prompts to generate class-agnostic seg-
mentation masks [1,2]. Other approaches, such as Segment Anything in medical
scenarios, driven by Text prompt (SAT) [3] and nnU-Net-based foundation mod-
els [4,5], operate on a predefined set of medical object classes.

Despite their promises, recent studies have revealed limitations in the accu-
racy, computational efficiency and fairness of SFMs in clinical applications [6-8],
highlighting the need for further research to improve their practical usability. In
numerous practical applications, access to a diverse set of pre-trained SFMs is
readily available. However, the challenge lies in adapting these generalist models
to domain-specific segmentation tasks using only unlabeled image data. Instead
of focusing on developing new standalone SFMs, this paper addresses a criti-
cal, yet under-explored, challenge: how to effectively adapt and leverage exist-
ing SFMs for specific, real-world medical segmentation tasks, particularly when
ground-truth annotations are unavailable.

We investigate a novel approach: knowledge distillation from a heterogeneous
ensemble of SFMs to create a high-performance model for a specialized task,
such as organ segmentation in CT. Our proposed approach applies the available
SFMs (some requiring prompts) to generate initial segmentation predictions.
These predictions, though imperfect, serve as a rich source of "soft" supervision.
We hypothesize that by distilling knowledge from this ensemble of generalist
outputs, we can train a domain-specific model that significantly outperforms any
individual SFM or a naive ensemble averaging approach. This distilled model not
only achieves superior segmentation accuracy but also offers substantial reduc-
tions in computational cost and demonstrates improved fairness across diverse
demographic groups. The highlights of this work are summarized as follows:
(1) We introduce a novel, probabilistic knowledge distillation framework that
effectively leverages the collective knowledge of a heterogeneous ensemble of
generalist SFMs to train a highly specialized and efficient segmentation model.
This framework explicitly addresses the challenge of lacking ground truth labels.
(2) The distilled specialized model demonstrably outperforms both individual
SFMs and their ensemble average, achieving state-of-the-art results on the tar-
get segmentation task. Furthermore, by incorporating a fairness-aware distilla-
tion objective, we mitigate inherent biases, leading to improved segmentation
equity across sensitive demographic attributes, including sex, age, and BMI. (3)
The specialized model is intentionally designed to be significantly smaller than
the SFMs, leading to substantial improvements in inference speed and reduced
computational requirements.
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2 Materials and Methods

Our method distills knowledge from multiple pre-trained SFMs into a special-
ized model for medical image segmentation. This process comprises two principal
stages (Figure 1): (1) generation of diverse segmentation masks using distinct
SFMs, and (2) distillation of this aggregated knowledge into a smaller, more ef-
ficient, and higher-performing student model, with an optional fairness enhance-
ment component. We investigate and compare deterministic and probabilistic
distillation strategies within this framework.
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Fig. 1. Overview of the pipeline of this study.

We leverage a set of six pre-trained SFMs, denoted as F = {F; : SAT, F, :
SAM, F3 : MedSAM, F; : SAM2, F5 : MedSAM2, Fy : TotalSeg}. For a given
3D medical image X; within dataset D, and its corresponding set of 2D axial
slices {x; ;}, each SFM F} € F generates a segmentation mask according to
its specific input requirements.. The mask generation process for each model
is as follows: (1)SAT (F}): A textual prompt, specifying the target organ "o",
is provided. The 3D segmentation mask is obtained as: Y; sar = F1(X, "0").
(2)SAM-based Models (Fy, F3, Fy, F5): These models require a region of inter-
est, specified as a bounding box, for each 2D slice. Let B; ;, represent the
bounding box delineating organ o within slice z; ;. The 2D segmentation mask
for slice z; ; using model Fy, (where k € {2,3,4,5}) is computed as: y; ; r, =
Fi(zi j,Bi ;o). These 2D masks are subsequently assembled to construct the 3D
mask Y; g, . (3) TotalSeg (Fs): This model operates directly on the 3D image:
Yi Totaiseg = F6(Xi). The output of this stage is a set of six 3D segmentation
masks, {Y; m,....Y; r, }, for each input image X;.
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2.1 Multi-Source Knowledge Distillation

Deterministic Distillation (DD). In this baseline approach, the multiple ex-
pert masks are aggregated into a single "consensus" mask. This consensus mask
serves as the pseudo-label for training a small (relative to the foundation) student
model. We evaluate two representative student model architectures: UNet [9] and
HSNet [10], where UNet is CNN-based model and HSNet is a Transformer-driven
model (using PvT [11]).

Mask Aggregation: For each image X;, the average of masks generated by 6

foundation model is computed: 37,»7(“,9 = % 22:1 Yi -

Student Model Training: The student model, denoted as .S, is trained to predict
Y avg given the input image X;. The loss function is a combination of Intersection
over Union (IoU) loss and Binary Cross-Entropy (BCE) loss (in Eq. 1).

M
L(Xu }/i,avg) - Z [LIOU(SWL(Xi)a }/i,a'ug) + LBCE(Sm (Xi)a }/i,avg)] ) (1)

m=1

where S,,, (X;) represents the m-th output of the student model and M represents
the number of segmentation generalized. For UNet, M = 1. For HSNet, M = 4,
consistent with the original HSNet publication.

Inference: For UNet inference, the final prediction is obtained by applying a sig-
moid activation to the model’s output: Sinrerence(Xi) = 0(S(X;)). For HSNet,
the final prediction is obtained by averaging the M outputs after a sigmoid acti-
vation: Sinference(Xi) = 0 (ﬁ Zn]\f:l Sm(Xi)>, where o is the sigmoid function.
Probabilistic Distillation (PD). This strategy employs the Probabilistic U-
Net (PUNet) [12], a model designed to accommodate multiple plausible segmen-
tation masks by learning a distribution over possible outputs.

Architecture: We incorporate a latent space RY (N = 6 in our implementa-
tion, corresponding to the number of SFMs) to represent segmentation variabil-
ity. The full model consists of a prior network P(z|X;), a posterior network
Q(z|X;,Y;), and a U-Net backbone. (a) Prior Network: Generates a Gaus-
sian distribution over the latent space, conditioned on the input image X;:
z ~ P(Xi) = N(Wprior(Xi;w), Zprior(Xi;w)), where w represents the pa-
rameters of the prior network. (b) Posterior Network: Generates a Gaussian
distribution conditioned on both the input image X; and a target mask Y;:
z ~ Q(|X4,Y:) = N(tpost (Xi, Yis v), Xpost(Xi, Yisv)), where v denotes the pa-
rameters of the posterior network. (¢) Segmentation Generation: A latent vector
z, sampled from the latent space distribution, is combined with features ex-
tracted by the U-Net backbone, fy_net(X;;6), to produce a segmentation mask:
S(Xi,2) = feomp(fu—net(Xi;0),2;1) where 6 are the U-Net parameters, feomp
represents a combining function (implemented as three sequential 1x1 convolu-
tional layers), and 1 are the parameters of feomp.

Stochastic Target Mask Selection: During training, for each image X, one of the
six SFM-generated masks is randomly selected as the target mask. Let K be a
discrete uniform random variable taking values in the set {1,2,3,4,5,6}. The
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target mask Y; is defined as: Y; = 22:1 I(K = k)Y p,, where I(-) denotes the
indicator function.

Loss Function: The loss function encourages accurate segmentation and consis-
tency between the prior and posterior distributions (in Eq. 2).

L(X3,Y:) = Epuqix,,v) [~ log Pe(Yi| S(Xi,2))] 4 8- Di1.(Q(2] X, Yi)HP(Z|Xi2)),
2

where P, is the likelihood of the correct segmentation, D, denotes the Kullback-
Leibler divergence, and [ is a weighting hyperparameter.

Inference: At inference time, given an input image X;, we aim to generate a sin-
gle, high-quality segmentation mask. This is achieved by leveraging the learned
prior distribution P(z|X;) to sample N(N=10 in our study) latent vectors,
{21,22,...,zN}, where z, ~ P(-|X;) for n = 1,...,N. Each latent vector z,
is then used to generate a corresponding segmentation mask S(X;,z,). The fi-
nal segmentation mask, Sfine(X;), is obtained by averaging these individual

masks: Stinai(X;) = % Zﬁ;l S(Xi,2n).

2.2 Fairness-aware Batch Sampling

To mitigate potential biases arising from imbalanced demographic representa-
tion, we introduce a novel, jointly-stratified batch sampling strategy for train-
ing the student model. This approach deviates from traditional stratified sam-
pling [13], which typically focuses on balancing a single demographic attribute.
Instead, our method aims to achieve a simultaneous balance across three key de-
mographic factors: sex, age, and Body Mass Index (BMI). Below are the details
of the Balanced Batch Sampling method.

Multi-Attribute Data Stratification: The training dataset D is partitioned
into nine mutually exclusive queues: Sex: Dj,q1e = {z € D | sex(z) = male} and
Dtemate = {x € D | sex(z) = female}. Age (years): Dag_30, D3o—40, Dao—50,
D50_60, where Da1—(12 = {l‘ €D ‘ a < age(a;) < ag}. BMI (kg/mz) DBMISQh
Dpnrre(e1,24), DBmis2a, where, e.g., Dpyr<or = {x € D | BMI(z) < 21}.
These queues are constructed such that Dpare U Dfemate = Dy Uyeq Do = D
(where A = {20-30, 30-40, 40-50,50-60}), and | J,c 3 D» = D (where B = {BMI <
21, BMI € (21,24), BMI > 24}).

Iterative Batch Construction and Refinement: For each training batch
of size B, the following procedure is employed: (1) Initial Sex Balancing: The
batch, batch;, is initialized by drawing B/2 samples from D, ;. and B/2 samples
from Dyemaie. The remaining seven queues (Dag—30, D3o—a0, Dao—50, Dso—60,
Dpar<21, Da1—24, Dpymr>24) are updated by removing the selected samples.
(2) Age and BMI Balancing: The batch composition is then iteratively refined
to achieve balance across both age and BMI distributions, while preserving the
initial sex balance. This is accomplished through a series of adjustments: (2.a)
Age Balancing: If the ratio between the counts of the most and least represented
age groups within batch; exceeds a predefined threshold (1.1, representing a
10% tolerance), samples are strategically removed from the over-represented age
group and added from the under-represented age group. The sex information
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Table 1. Segmentation Performance (DSC) of Foundation Models and Our Proposed
Methods. Red bold indicates the best performance, black bold denotes the second-best,
and blue represents the third-best. "Overall" refers to the average performance across
six organs.

Model Liver |Kidney|Spleen|Lung [IVC |Pancreas|Overall
SAT 0.910 {0.918 |0.868 [0.850 0.347 |0.500 0.733
MedSAM 0.784 |0.882 |0.818 [0.886 |0.723 |0.462 0.760
SAM 0.878 [0.892 |0.838 [0.955 |0.774 |0.585 0.821
TotalSeg 0.911 |0.573 |0.853 [0.855 |0.515 |0.229 0.657
MedSAM2 0.905 [0.801 |0.863 [0.897 |0.667 |0.670 0.801
SAM2 0.912 |0.868 |0.879 [0.944 |0.764 |0.623 0.832

Avg. Ensemble|0.936(0.907 [0.903 [0.962 |0.814(0.690 0.870
UNet(DD) 0.935 |0.942 |0.909 [0.983(0.791 |0.704 |0.878
HSNet(DD) |0.937|0.950 |0.910 |0.983|0.814(0.744 |0.890
PUNet(PD) |0.939|0.955 [0.918 |0.984(0.832(0.770 |0.900

Table 2. Segmentation Performance (HD) of Foundation Models and our Distilled
Models.

Model Liver |Kidney|Spleen|Lung |[IVC |Pancreas|Overall
SAT 8.508 [5.219 [7.264 [15.401|17.69 |16.029 |11.685
MedSAM 22.087]4.025 [14.213]22.441|4.505 |20.108 |14.563
SAM 18.485|5.062 |13.423|9.449 [5.917 [18.508 |11.807
TotalSeg 12.528|7.434 |4.108 |60.647{11.583(18.570 |19.145
MedSAM2 9.500 [6.841 [9.932 (22.066|7.012 |9.606 10.826
SAM2 13.199|6.294 |8.351 |14.503(6.808 [17.038 |11.032

Avg. Ensemble|7.551(4.251 |5.613 |8.631 |4.771 [9.911 6.788
UNet(DD) 7.595(3.751 [3.849 (1.797 (4.513 |7.947 |4.909
HSNet(DD) |8.199 |2.005 |4.534 |2.959|3.835(6.576 |4.685
PUNet(PD) |5.898|2.225 |4.017 |1.838|3.814 [5.359 |3.859

of removed samples is recorded, and replacement samples are drawn from the
corresponding sex queue within the under-represented age group. (2.b) BMI Bal-
ancing: A similar iterative process is performed for BMI. If the ratio between
the most and least represented BMI groups exceeds the threshold (1.1), samples
are removed and added. In step, both the sex and age of removed samples are
recorded, and replacement samples are selected to match these attributes, ensur-
ing that the balance achieved in previous steps is maintained. After each sample
addition or removal, all nine queues are updated to reflect the current state of
the dataset. (3) Termination: The batch construction process for a given epoch
terminates when any of the nine demographic queues contains an insufficient
number of samples to maintain the desired balance during further refinement
steps (e.g., fewer than B/2 samples remaining in Diy,q1e OF D female)-
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Fig. 2. Group-Level Fairness of Various Segmentation Foundation Models and Our Dis-
tilled Models (Blue and N.S. indicate strong fairness and Red indicates severe fairness
issues).

Table 3. Multi-Attribute Balanced Batch Sampling Enhances Fairness. Black bold
denotes the group bias (in STD) of PUNet performance is reduced via fair training,
represents stronger fairness

Attribute|Models Liver |Kidney|Spleen |Lung [IVC Pancreas

Sex PUNet 0.0045 |0.0009 |0.0033 |0.0009 [0.0014 |0.0152
Fair trained|0.0036|0.0002|0.0020(0.0004|0.0071 {0.0146
Age PUNet 0.0050 |0.0044 |0.0057 [0.0011 |0.0296 [0.0174

Fair trained|0.0033|0.0040|0.0052{0.0009(0.0253|0.0148
BMI PUNet 0.0069 |0.0024 [0.0063 |0.0016 |0.0079 [0.0201
Fair trained|0.0048|0.0022|0.0048|0.0016{0.0029|0.0131

3 Experiments and Results

We curated a private MRI/CT dataset (702 scans; 291 male, 411 female) for
foundation model evaluation, ensuring no prior exposure during model training.
The dataset includes MRI scans of seven anatomical structures (liver, kidney,
spleen, pancreas, IVC) and CT scans of lungs. Participants (20-60 years) were
stratified by age (20-30: 43.7%, 30-40: 22.2%, 40-50: 16.7%, 50-60: 17.4%) and
BMI (<21: 28.8%, 21-24: 39.2%, >24: 32.0%). Ethically approved and annotated
by two experienced radiologists (each with over five years of experience), the
dataset was divided into knowledge distillation set (with no ground truth) and
testing set (with a 1:1 ratio), ensuring that both sets preserved the original
distribution of sex, age, and BMI.

Performance in Overall Accuracy. To evaluate the segmentation perfor-
mance, DSC was calculated for models among 6 organs. As shown in Table 1, the
knowledge-distilled models (DD (UNet), DD (HSNet), and PD (PUNet)) con-
sistently and significantly outperformed all foundation models and their ensem-
ble average(s 22:1 Y: r,) across all six organs on DSC. Notably, PD (PUNet)
achieved the highest DSC results in every organ, demonstrating the substantial
performance gains achievable through the proposed multi-source knowledge dis-
tillation. This highlights the effectiveness of distilling knowledge from multiple,
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Fig. 3. No (statistically) significant segmentation performance drop when applying
fairness-enhanced training in PD (PUNet).

Table 4. Model Size and Inference Cost for 512x512 Input.

Models SAT |SAM |MedSAM|SAM2 |MedSAM?2|TotalSeg| UNet|HSNet|/PUNet

Param(M) |878.59 |635.63 |90.48 216.90 |31.42 49.08 2.26 (29.85 [5.00

FLOPs(G)|1090.18|2736.62|371.99  |2813.98|106.72 70.41 55.65(23.15 [96.95

diverse foundation models into specialized, high-performing segmentation mod-
els. The superiority of our method was further validated on HD (Table 2), where
the knowledge-distilled models performs better than other foundation models
and PD (PUNet) achieved the lowest HD values across most organs. This dual
dominance in both DSC (structural overlap) and HD (boundary accuracy) un-
derscores the robustness of multi-source distillation in preserving anatomical
fidelity while minimizing segmentation errors.

Performance in Group-level Fairness and Model Efficiency. To quantify
segmentation performance disparities among groups, group-wise DSC was calcu-
lated based on sex, age, and BMI attributes. One-way ANOVA [14, 15| was ap-
plied to DSC distributions, with p < 0.001 (***) indicating significant disparities
(unfairness). As shown in Fig. 2, our experiments focusing on six different organs
revealed significant fairness differences in Al-driven medical image segmentation
across gender, age, and BMI. Models like SAT and TotalSeg, while exhibiting
lower overall segmentation accuracy, demonstrated better fairness. The multi-
model averaging ensemble (AVG) enhanced segmentation performance but did
not lead to clear improvements in fairness. In contrast, significant improvements
were achieved using our multi-source knowledge distillation method, resulting in
models (DD: UNet, HSNet; and PD: PUNet) that surpassed the AVG ensemble
in fairness metrics across all attributes, with PD (PUNet) showing the most
prominent gains in achieving greater fairness. In addition, we show that employ-
ing multi-attribute balanced batch sampling during PUNet’s training resulted
in further fairness enhancements across all six organs and all three attributes
(gender, age, and BMI), as further confirmed by the reduced standard deviation
(STD) [7,8,13] in the mean DSC for each group presented in Table 3. The pro-
posed fairness-enhancing training significantly reduced inter-group performance
differences and, as illustrated in Fig. 3, maintained overall segmentation accu-
racy. Finally, as shown in Table 4, the distilled models are generally smaller in
size and more efficient to run than the segmentation foundation models.
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4 Conclusion

In conclusion, we proposed a multi-source distillation framework that adapts
segmentation foundation models (SFMs) for medical tasks without ground-truth
labels by leveraging heterogeneous SFM ensembles. Our results demonstrate that
this approach not only significantly improves performance on multi-organ seg-
mentation compared to individual SFMs and their ensemble average, but also
significantly enhances fairness across demographic attributes. Specifically, the
distilled model incorporating multi-attribute balanced batch sampling exhib-
ited superior performance and fairness improving computational efficiency. The
demonstrated ability to create specialized, high-performing, and fair models from
readily available generalist SFMs, without relying on ground truth labels, repre-
sents a significant advancement towards realizing the clinical potential of founda-
tion models, with future work focusing on broader applicability and theoretical
underpinnings of fairness improvements.
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