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Abstract. Ultrasound Computed Tomography (USCT) has emerged as
a cutting-edge imaging modality, offering quantitative acoustic parame-
ter maps to enhance disease diagnosis. Full-waveform Inversion (FWI),
a mainstream reconstruction method, enables high-resolution imaging
of the speed of sound (SOS) from USCT measurements. However, its
strong sensitivity to the initial model and the anatomical distortions
caused by cycle-skipping artifacts significantly hinder its application in
complex clinical scenarios. In this paper, we propose P2INR-FWI, a Polar
coordinate-based Implicit Neural Representation framework with struc-
tural Prior, to achieve unsupervised, subject-specific SOS reconstruction.
Departing from conventional Cartesian coordinate-based neural repre-
sentations, our method introduces a polar coordinate encoding mecha-
nism aligned with the geometry of the USCT ring array, which substan-
tially accelerates convergence and improves reconstruction accuracy. Fur-
thermore, we develop a reflected signal-derived structural prior extrac-
tion method to guide the reconstruction process toward clinically critical
regions, thereby enabling fine-structure restoration. Experiments con-
ducted on numerical phantom, breast-mimicking phantom, and in vivo
data demonstrate that our method outperforms traditional approaches in
both reconstruction quality and quantitative metrics, without requiring
additional regularization constraints.

Keywords: Implicit Neural Representation · Ultrasound imaging · Speed
of sound imaging

1 Introduction

Breast tissue composition varies across populations, with Asian women having
higher breast density, a known risk factor for breast cancer [3]. Moreover, the
incidence of breast cancer in Asian women is rising, particularly among younger
women [9], highlighting the need for improved diagnostic techniques. Ultrasound
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Computed Tomography (USCT) combines the non-invasive, radiation-free bene-
fits of traditional ultrasound with improved imaging depth and resolution, mak-
ing it a promising medical imaging technique, particularly for applications like
breast cancer screening [6]. Speed of sound (SOS) imaging, a quantitative map-
ping technique in USCT, plays a crucial role in assisting breast cancer diag-
nosis [6,18]. Traditional SOS reconstruction methods, like ray-based time-of-
flight [10], are limited in resolution, while Full-Waveform Inversion (FWI) [4]
enables higher precision by fully utilizing wavefield data. However, FWI’s compu-
tational intensity, sensitivity to initial models and susceptibility to cycle-skipping
artifacts [7], pose challenges for clinical use.

To overcome these issues, various strategies have been proposed, including
improved regularization constraints (e.g., optimal transport metrics [24], learned
regularization [21]) and parameter space expansion [14]. However, these ap-
proaches often suffer from limited effectiveness or increased computational com-
plexity. Recently, deep learning has opened new avenues, with data-driven meth-
ods such as InversionNet [25] and GAN-FWI [13]. Additionally, CNN-based ar-
chitectures have successfully enabled end-to-end mapping from wavefield data to
SOS images [12], although the scarcity of medical imaging data limits their gen-
eralization. Physics-informed neural networks (PINNs), integrating prior knowl-
edge from partial differential equations, show potential for solving inverse prob-
lems. Initial attempts have applied PINNs to FWI [16]. Building on these ideas,
the PEN-FWI model was proposed for ultrasound brain imaging [17], but its
generalization is constrained by the slice-specific nature of the training data.

Implicit Neural Representation (INR), a novel deep learning paradigm, has
shown strong capabilities in medical image reconstruction, including CT and
MRI [19,26]. INR has also been combined with differentiable beamforming to
estimate sound speed distributions and assist B-mode image reconstruction [5].
However, its integration with FWI for high-resolution SOS imaging in USCT re-
mains unexplored. To address these challenges, we propose P2INR-FWI, an INR
framework combining Polar-based radial-angular coordinate embedding (RACE)
and structural Prior, trained in an unsupervised and subject-specific manner.
Our contributions are three-fold: 1) We propose a novel INR framework for de-
signed USCT that effectively mitigates cycle-skipping and reduces reliance on
the initial model. 2) A radial-angular coordinate-based position encoding strat-
egy is introduced, tailored to the ring-shaped USCT sensor array, enhancing
both training convergence and reconstruction accuracy. 3) We develop a struc-
tural prior extraction algorithm using reflected signals, which guides training
with anatomical priors, thereby boosting reconstruction efficiency and accuracy.

2 Methodology

2.1 Preliminaries

FWI is an optimization technique constrained by wave equations. Assuming a
non-dissipative and isotropic medium where wave propagation occurs, the acous-
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tic pressure p adheres to the standard wave equation.

1

c(x)2
∂2p(x, t)

∂t2
−∆p(x, t) = s(x, t), (x, t) ∈ R2 × [0, T ] (1)

Guided by the wave equation, the speed of sound is estimated by minimizing
the mismatch between the simulated and observed data.

ĉ = argmin
c

Ns∑
i

Nr∑
j

∥pobs(i, j)− psim(i, j, c)∥2, psim(c) = R · p(c), (2)

where pobs ∈ RNs×Nr×T represents the observed data collected by the USCT
system, Ns denotes the number of transmitting sound sources, Nr indicates the
number of receiving sensors, and T corresponds to the number of sampling time
points. psim refers to the simulated acoustic pressure data, and the sampling
operator R represents the locations of the receiving sensors.

As a non-convex, ill-posed inverse problem, FWI faces inherent challenges,
especially in medical ultrasound. It is highly sensitive to the initial model and
noise, and its nonlinear nature increases algorithmic complexity. Additionally,
cycle-skipping artifacts, caused by wavefield phase ambiguities, often trap opti-
mizations in local minima, leading to anatomically inconsistent reconstructions.

2.2 Proposed P2INR-FWI Framework

To tackle the challenges in FWI, we propose P2INR-FWI, an implicit neural
representation framework incorporating structural prior and polar-based radial-
angular coordinate encoding. The method establishes an implicit mapping be-
tween spatial coordinates and speed of sound values through neural network pa-
rameters, providing implicit regularization that not only mitigates cycle-skipping
artifacts but also reduces FWI’s sensitivity to initial models and noise.
A. Framework Overview: As shown in Fig. 1, our architecture contains four
key components: 1) Polar Coordinate Encoding: Transform Cartesian coordi-
nates to radial-angular parameters with Fourier feature embedding; 2) Implicit
SOS Mapping: Position-to-value regression via MLP network; 3) Anatomical
Prior Guidance: Apply structural mask to constrain background with known
SOS values; 4) Physics-informed Optimization: Forward-modeled wavefield com-
parison for network updating.

Our network architecture is based on SIREN [20]. The MLP model consists
of 5 fully connected layers, with a sine(·) activation function applied after each
layer except the final one, which uses a Sigmoid(·) activation function for out-
put normalization. The network initialization follows the recommended scheme
from the original SIREN implementation. The network includes 4 hidden layers,
each containing 512 neurons. The loss function comprises data consistency (DC)
and regularization terms, including total variation (TV) and structural prior
regularization:

L = LDC + αLTV + βLprior (3)
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Fig. 1. Overview of our proposed P2INR-FWI Model framework.

where α and β are the weighting parameters for TV and structural prior losses,
respectively. The terms are defined as:

LDC = ∥pobs−NR(ĉ)∥2, LTV =

∫∫√
ĉ2x + ĉ2y dxdy, Lprior = ∥M⊙(ĉ−cb)∥2 (4)

where NR(·) represents the forward physical model to convert the SOS image
to the signal, ĉ is the predicted SOS image, M is a mask that identifies the
background region, and cb represents the known background SOS value.
B. Radial-Angular Coordinate Embedding (RACE): Existing INR meth-
ods primarily employ Cartesian coordinates or their encoded variants for medical
image reconstruction [19,26], neglecting USCT’s physical characteristics. The
circular transducer array creates radially distributed wavefronts with angular
sampling sparsity, while anatomical targets typically exhibit central-peripheral
structural organization. Our Radial-Angular Coordinate Embedding (RACE)
directly addresses these USCT-specific features through polar coordinate pa-
rameterization, adapting to the sparsity of angular sampling through θ-axis.

The Cartesian coordinates v = [x, y] are first converted to polar parameters
p = [ρ, θ] centered at the imaging region’s center:

ρ =
√
(x− x0)2 + (y − y0)2, θ = arctan

y − y0
x− x0

(5)

where ρ denotes the radial distance and θ the angular coordinate. The vector
v0 = [x0, y0] represents the pole, the center of the image.
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We perform Fourier feature embedding to transform the polar coordinates
into a higher-dimensional feature space, enabling the network to learn high-
frequency details more effectively [22]. This is achieved through a randomly
generated Gaussian matrix B ∈ R d

2×2, where d controls the feature vector’s
dimensionality. Each entry in B is sampled independently from a normal distri-
bution N (0, σ2), and the feature vectors are computed as follows:

γ(p) = [cos (2πBp), sin (2πBp)]T (6)

In this case, we set d to 1000 and σ to 0.1.
RACE is well-suited for USCT data representation, enriching spatial infor-

mation and improving the model’s ability to capture fine details.
C. Structural Prior Extraction: We utilize reflected signals to derive struc-
tural prior information for anatomical contour delineation. During USCT signal
acquisition, a coupling agent with known sound speed provides a priori infor-
mation for regions external to the anatomy, enabling generation of a mask that
defines region-of-interest (ROI) boundaries.

First, the signals from the transmit element itself in each transmit event are
extracted from the observed data pobs, forming the A-scan data set A ∈ RNs×T .
The Akaike Information Criterion (AIC) method [2] is then applied to identify
first-arrival times in each A-scan signal. The AIC method assumes the signal has
two locally stationary segments: one before and one after the first-arrival time,
and identifies the first-arrival time k by minimizing the following equation:

AIC(k) = k log σ2
1:k + (T − k) log σ2

k+1:T (7)

where σ2
1:k and σ2

k+1:T are the variances of the two segments, with T represent-
ing time samples. The distance between the boundary and the corresponding
transmit array is determined by multiplying half of the first-arrival time by the
coupler’s sound speed. Finally, coordinate transformation converts these distance
measurements into Cartesian space for boundary reconstruction.

3 Experiments and Results

3.1 Experiment Settings

A. Datasets: In this study, we carried out experiments using numerical phan-
tom (ground truth derived from MRI segmentation dataset [11]), real breast
phantom, and in vivo breast tissue data to assess the proposed method. Nu-
merical data were simulated using 500 kHz Ricker wavelets with 256 uniformly
distributed circular transducers (64 transmitters), and random Gaussian noise
was added to achieve a signal-to-noise ratio (SNR) of 40 dB, thereby simulating
real-world conditions. The real breast phantom (Fig. 3(a)) mimicked the shape
of a human breast, containing a 3 mm cylindrical insert (1580 ± 10 m/s) within
a 1540 ± 10 m/s main body. In vivo data were acquired from two volunteers with
distinct glandular and fat tissue distributions. Both phantom and in vivo data
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were collected using our custom system (512 sensors, 500 kHz center frequency,
25 kHz sampling rate), with 256 transmitters for phantoms and 512 for in vivo.
B. Evaluation Metrics: We used classical least-squares-based Full-Waveform
Inversion (FWI) as the baseline method. In numerical experiments, we compared
six approaches: FWI, mFWI (FWI with multi-frequency strategy), INR-FWI,
INR-mFWI, P2INR-FWI, and P2INR-mFWI. For phantom and in vivo experi-
ments, we adopted mFWI, INR-mFWI and P2INR-mFWI due to their superior
robustness. Quantitative evaluations utilized four metrics: Structural Similarity
Index (SSIM) [23], Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error
(RMSE), and Learned Perceptual Image Patch Similarity (LPIPS) [27].
C. Implementation Details: All methods initialized with a known homoge-
neous background SOS model. We trained separate models for each data sce-
nario using PyTorch [15] and the Adam optimizer [8], with an initial learning
rate of 1e−4. For numerical simulation, the learning rate decayed by 0.8 every
500 epochs, totaling 6000 epochs. For phantom and in vivo data, it decayed
every 200 epochs, totaling 600 epochs. The coefficients were fixed at β = 1e−5

throughout, with α = 0 (numerical simulation) or 2e−5 (phantom and in vivo),
empirically validated. All experiments utilized an NVIDIA RTX 4090 GPU.

3.2 Results

We defined a square computational domain of 0.23 m per side for all experiments.
Numerical experiments lasted 0.2 ms, while phantom and in vivo experiments
lasted 0.16 ms. A uniformly distributed circular array of ultrasound sensors with
a diameter of 0.22 m was used for signal transmission and data acquisition.

Fig. 2. Reconstruction performance comparison in numerical experiment.

A. Numerical Experiment: To satisfy the Courant-Friedrichs-Lewy condi-
tion [1], we discretized the computational domain into a 592×592 grid with 3000
time steps for forward modeling using the finite difference method. We employed
classical FWI as the baseline and compared the performance of six approaches.
Quantitative evaluation results are presented in Tab. 1, and experimental re-
sults, with reconstruction images above and misfit maps below, are shown in
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Fig.2. mFWI applies a multi-frequency strategy to FWI by using low-pass But-
terworth filters with cutoff frequencies of 100, 200, 300, 400, and 500 kHz to
separate the data into distinct frequency bands, mitigating the cycle-skipping
effect. Our method excels in both metrics and visual quality, achieving compet-
itive performance even without the multi-frequency strategy.

Table 1. Quantitative results on the numerical phantom.

Methods SSIM ↑ PSNR ↑ RMSE ↓ LPIPS ↓

FWI 0.695 23.358 65.870 0.733

mFWI 0.904 32.603 5.066 0.329

INR-FWI 0.906 29.193 6.135 0.291

INR-mFWI 0.912 32.820 4.562 0.305

P2INR-FWI 0.986 34.289 4.284 0.053

P2INR-mFWI 0.986 34.271 4.220 0.053

B. Breast Phantom Experiment: In the breast phantom experiment, we em-
ployed an 896×896 grid discretization with 3956 time steps for wave propaga-
tion modeling, incorporating water coupling during data acquisition. As shown
in Fig.3, while all methods successfully resolve the high-speed cylindrical tar-
get, mFWI exhibits sound speed underestimation manifesting as a low-velocity
artifact at the breast-water interface; INR-FWI demonstrates systematic over-
estimation attributed to insufficient prior information constraints. Notably, de-
tailed analysis of a subregion adjacent to the target in Fig.3(e) demonstrates our
method’s superior reconstruction accuracy relative to the ground truth.

Fig. 3. Breast phantom reconstruction. Profiles in (e) show SOS values along the lines
marked in (b), (c) and (d) at y = 109 mm for ground truth and method results.

C. In vivo Experiment: For in vivo experiment, we employed an 896×896
spatial grid with 4356 temporal steps. A solid gel coupling agent (SGCA) [28]
was used as the coupling medium. Fig. 4 presents the reconstruction results,
where (a) and (b) correspond to two different subjects.
D. Ablation Study: To validate the effectiveness of our method’s core compo-
nents, we incrementally integrated each module into the FWI framework. "Base"
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Fig. 4. In vivo reconstruction results.
Fig. 5. Loss curve comparisons
on numerical phantom.

refers to the INR-based FWI reconstruction, the foundational framework for our
approach. Ablation studies on the numerical phantom in Tab. 2 confirm that
all components collectively improve reconstruction accuracy, with the structural
prior specifically enhancing final precision. Training loss curves (see Fig. 5) fur-
ther demonstrate the RACE module’s role in accelerating convergence. Numer-
ical simulations indicate that although our method requires 7.1 s per iteration
(vs. 5.6 s for conventional FWI) with more iterations needed for converge, it
achieves significantly improved reconstruction accuracy. Notably, incorporating
structural prior into classical FWI failed to resolve cycle-skipping, yielding poor
reconstruction results.

Table 2. Ablation Study Results on the contributed components.

Base RACE Prior SSIM ↑ PSNR ↑ RMSE ↓ LPIPS ↓

× × × 0.695 23.358 65.870 0.733

× × ✓ 0.770 23.552 71.524 0.497

✓ × × 0.906 29.193 6.135 0.291

✓ ✓ × 0.929 32.046 5.540 0.258

✓ × ✓ 0.984 34.167 4.335 0.054

✓ ✓ ✓ 0.986 34.289 4.284 0.053

4 Discussion and Conclusion

Our work proposes an INR-based Full-waveform Inversion method for USCT,
aimed at high-resolution SOS reconstruction. To address the ring-array acqui-
sition geometry of USCT system, we develop a radial-angular coordinate em-
bedding (RACE) strategy, demonstrating enhanced convergence and accuracy
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over Cartesian coordinate-based approaches. A structural prior extraction al-
gorithm is further designed based on reflected signals, and anatomical features
are integrated into the training process, significantly improving reconstruction
reliability. The abrupt loss drop stems from the network’s outward-to-inward
learning tendency induced by sparse simulation data, where persistent central
gaps suddenly resolve into complete structures during convergence.

Our method establishes a subject-specific self-supervised training paradigm,
leveraging the network’s implicit regularization to reduce the dependence on the
initial model and effectively mitigate the cycle-skipping problem in traditional
FWI. Experimental results show that it significantly improves the quality of
USCT speed of sound image, providing more reliable imaging support for breast
disease diagnosis.

Acknowledgement. The authors are grateful to the High-Performance Computing
platform of Huazhong University of Science and Technology and the Supercomputing
Platform of Hubei Medical Devices Quality Supervision and Test Institute.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Abe, K., Higashimori, N., Kubo, M., Fujiwara, H., Iso, Y.: A remark on the courant-
friedrichs-lewy condition in finite difference approach to pde’s. Advances in Applied
Mathematics and Mechanics 6(5), 693–698 (2014)

2. Akaike, H.: A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19(6), 716–723 (1974)

3. Bae, J.M., Kim, E.H.: Breast density and risk of breast cancer in asian women: A
meta-analysis of observational studies. Journal of Preventive Medicine and Public
Health 49(6), 367–375 (2016)

4. Bernard, S., Monteiller, V., Komatitsch, D., Lasaygues, P.: Ultrasonic computed to-
mography based on full-waveform inversion for bone quantitative imaging. Physics
in Medicine & Biology 62(17), 7011–7035 (2017)

5. Byra, M., Jarosik, P., Karwat, P., Klimonda, Z., Lewandowski, M.: Implicit neural
representations for speed-of-sound estimation in ultrasound. 2024 IEEE Ultrason-
ics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS) pp. 1–4
(2024)

6. Duric, N., Littrup, P., Poulo, L., Babkin, A., Pevzner, R., Holsapple, E., Rama,
O., Glide, C.: Detection of breast cancer with ultrasound tomography: First results
with the computed ultrasound risk evaluation (cure) prototype. Medical physics
34(2), 773–785 (2007)

7. Hu, W., Chen, J., Liu, J., Abubakar, A.: Retrieving low wavenumber information
in fwi: An overview of the cycle-skipping phenomenon and solutions. IEEE Signal
Processing Magazine 35(2), 132–141 (2018)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)



10 Z. Wang et al.

9. Lei, S., Zheng, R., Zhang, S., Wang, S., Chen, R., Sun, K., Zeng, H., Zhou, J., Wei,
W.: Global patterns of breast cancer incidence and mortality: A population-based
cancer registry data analysis from 2000 to 2020. Cancer Communications 41(11),
1183–1194 (2021)

10. Li, C., Duric, N., Littrup, P., Huang, L.: In vivo breast sound-speed imaging
with ultrasound tomography. Ultrasound in Medicine & Biology 35(10), 1615–1628
(2009)

11. Lou, Y., Zhou, W., Matthews, T., Appleton, C., Anastasio, M.: Generation of
anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast
imaging. Journal of biomedical optics 22 (2017)

12. Lozenski, L., Wang, H., Li, F., Anastasio, M., Wohlberg, B., Lin, Y., Villa, U.:
Learned full waveform inversion incorporating task information for ultrasound
computed tomography. IEEE Transactions on Computational Imaging 10, 69–82
(2024)

13. Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic seismic waveform inversion using
generative adversarial networks as a geological prior. Mathematical Geosciences
52, 53–79 (2020)

14. Operto, S., Gholami, A., Aghamiry, H.S., Guo, G., Mamfoumbi, F., Beller, S.:
Full waveform inversion beyond the born approximation: A tutorial review. arXiv
preprint arXiv:2212.10141 (2022)

15. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in Neural Information Processing
Systems. vol. 32 (2019)

16. Rasht-Behesht, M., Huber, C., Shukla, K., Karniadakis, G.E.: Physics-informed
neural networks (pinns) for wave propagation and full waveform inversions. Journal
of Geophysical Research: Solid Earth 127(5), e2021JB023120 (2022)

17. Ren, J., Li, J., Liu, C., Chen, S., Liang, L., Liu, Y.: Deep learning with physics-
embedded neural network for full waveform ultrasonic brain imaging. IEEE Trans-
actions on Medical Imaging 43(6), 2332–2346 (2024)

18. Sandhu, G.Y., Li, C., Roy, O., Schmidt, S., Duric, N.: Frequency domain ultrasound
waveform tomography: breast imaging using a ring transducer. Physics in Medicine
& Biology 60(14), 5381–5398 (2015)

19. Shen, L., Pauly, J., Xing, L.: Nerp: Implicit neural representation learning with
prior embedding for sparsely sampled image reconstruction. IEEE Transactions on
Neural Networks and Learning Systems 35(1), 770–782 (2024)

20. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. In: Advances in Neural Infor-
mation Processing Systems. vol. 33, pp. 7482–7493 (2020)

21. Sun, P., Yang, F., Liang, H., Ma, J.: Full-waveform inversion using a learned regu-
larization. IEEE Transactions on Geoscience and Remote Sensing 61, 1–15 (2023)

22. Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing-
hal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional domains. In: Advances in Neural In-
formation Processing Systems. vol. 33, pp. 7537–7547 (2020)

23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Process-
ing 13(4), 600–612 (2004)

24. Wang, Z., Xiao, J., Li, D., Li, B., Zhang, J., Ta, D.: Full waveform inversion guided
wave tomography with a recurrent neural network. Ultrasonics 133, 107043 (2023)



P2INR-FWI 11

25. Wu, Y., Lin, Y.: Inversionnet: An efficient and accurate data-driven full waveform
inversion. IEEE Transactions on Computational Imaging 6, 419–433 (2019)

26. Zhang, M., Feng, R., Li, Z., Feng, J., Wu, Q., Zhang, Z., Ma, C., Wu, J., Yan, F.,
Liu, C., Zhang, Y., Wei, H.: A subject-specific unsupervised deep learning method
for quantitative susceptibility mapping using implicit neural representation. Med-
ical Image Analysis 95, 103173 (2024)

27. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 586–595 (2018)

28. Zhou, L., Zhang, Q., Wu, Y., Liu, Z., Wu, Y., Li, X., Qiu, W., Lou, C., Ding,
M., Yuchi, M.: A coupling, stabilizing, and shaping strategy for breast ultrasound
computed tomography (usct) with a ring array transducer. Ultrasonics 138, 107212
(2024)


	P2INR-FWI: an Implicit Neural Representation Method for Speed of Sound Image Reconstruction in Ultrasound Computed Tomography

