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Abstract. Multimodal Large Language Models (MLLMs) have shown
significant potential in medical image analysis. However, their capabil-
ities in interpreting fundus images, a critical skill for ophthalmology,
remain under-evaluated. Existing benchmarks lack fine-grained task di-
visions and fail to provide modular analysis of its two key modules, i.e.,
large language model (LLM) and vision encoder (VE). This paper intro-
duces FunBench, a novel visual question answering (VQA) benchmark
designed to comprehensively evaluate MLLMs’ fundus reading skills.
FunBench features a hierarchical task organization across four levels
(modality perception, anatomy perception, lesion analysis, and disease
diagnosis). It also offers three targeted evaluation modes: linear-probe
based VE evaluation, knowledge-prompted LLM evaluation, and holistic
evaluation. Experiments on nine open-source MLLMs plus GPT-40 re-
veal significant deficiencies in fundus reading skills, particularly in basic
tasks such as laterality recognition. The results highlight the limitations
of current MLLMs and emphasize the need for domain-specific training
and improved LLMs and VEs.
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1 Introduction

Multimodal Large Language Models (MLLMs), with their strong capabilities
in generic visual content understanding, are rocking the field of medical image
analysis [8, 14] and consequently reshaping the research landscape of medical
image-based disease diagnosis [6,37]. Consider Al-enabled Ophthalmology for
instance. The combination of remote MLLMs and locally deployed non-invasive
fundus imaging devices such as color fundus photography (CFP) makes high-
quality primary diabetes care possible at community clinics [15]. While research
on medical MLLMs, including ophthalmology-focused studies [6, 15], is grow-
ing rapidly [32,36], we observe that the development of ophthalmology-targeted
benchmarks is lagging behind. This paper develops FunBench, a new bench-
mark for evaluating the efficacy of open-source MLLMs for fundus reading
tasks of varied difficulties, see Fig. 1.

*Corresponding author (xirong@ruc.edu.cn)


https://github.com/ruc-aimc-lab/FunBench

2 Q. Wei et al.

L1: Modality perception L2: Anatomy perception L3: Lesion analysis L4: Disease diagnosis

(a) Tasks at four levels, from modality perception (L1) to disease diagnosis (L4).
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Fig. 1: Proposed FunBench for assessing an MLLM’s funding reading skills
by (a) varied-level tasks and three distinct evaluation modes, i.e. (b) E-mode I: linear-
probe based vision encoder (VE) evaluation, (c) E-mode II: knowledge-prompted large
language model (LLM) evaluation and (d) E-mode III: holistic evaluation.

While medical benchmarks such as OmniMedVQA [9] and GMAI-MMBench
[35] have retinal images included, they treat retinal image-based visual question
answering (VQA) as a single task. A detailed and structured evaluation of how
well a specific model can interpret retinal images is naturally absent from these
general-purpose benchmarks. Towards filling the gap, LMOD [25] has been de-
veloped, evaluating the performance of MLLMs on recognizing major anatomical
structures of the fundus, e.g. optic cup, optic disc and fovea, and on recognizing
two diseases, i.e. glaucoma and macular hole. Therefore, LMOD enables a more
detailed assessment as opposed to OmniMedVQA and GMAI-MMBench. Our
FunBench technically differs from LMOD for its hierarchical task organization
and targeted evaluation modes.

The construction of FunBench is driven by our quest to answer two funda-
mental questions related to the assessment of a MLLM’s fundus reading skills.
That is, what to ask and how to ask. On answering the first question, we consider
four levels of tasks, ranging from low-level modality and anatomy perception to
high-level lesion analysis and disease diagnosis. Such a task organization enables
a comprehensive assessment of the level and extent to which an MLLM has mas-
tered its fundus reading skills, an evaluation that prior benchmarks have not
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adequately supported. For answering the second question, our evaluation is not
only targeted at the MLLM as a whole, but also considers its two key modules,
i.e. vision encoder (VE) and large language model (LLM). Such a design enables a
joint evaluation that is both holistic and modular — an analytical approach not
used in the previous work [9,25].

To sum up, our contributions are three-fold as follows:
e Dataset. We introduce FunBench, a novel benchmark for evaluating fundus
reading skills of MLLMs.
e Evaluation. We evaluate nine open-source MLLMs, released between 2023.10
to 2025.01 on HuggingFace. These models cover five VEs and seven LLMs. We
include GPT-4o as a proprietary baseline and DIVOv2 [22] as a VE baseline.
¢ Findings. The MLLMs evaluated rely heavily on the internal LLMs to perform
the fundus reading tasks. The models possess quite limited fundus reading skills.
In particular, they lack some basic skills such as laterality recognition.

2 FunBench Construction

2.1 Dataset Curation

Hierarchical Task Organization Depending on the extent to which a pro-
fessional fundus reading skill is required, we consider four levels of tasks, which
mirrors the progressive complexity of fundus reading capabilities, ranging from
basic modality perception to advanced fundus image interpretation.

e Level 1 (L1): Modality perception. A model possessing L1 skills shall
identify the imaging technique used to produce a given fundus image. In a naive
setting, one might consider selecting “fundus” from multiple choices such as “nat-
ural”, “painting”, and “remote sensing”. A more difficult setting is to select among
varied fundus modalities such as CFP, OCT and UWF plus other medical imaging
such as X-ray and MRI. We name the two settings coarse-grained modality per-
ception (L1a) and fine-grained modality perception (L1b), respectively.

e Level 2 (L2): Anatomy perception. The optic disc (OD) and the fovea
are two major anatomical structures in the retina. Their visual patterns are
relatively clear: OD typically appears as an oval bright object in a color fun-
dus image, whilst the fovea is centered in the darkest area on OD’s temporal
side [34]. Moreover, the laterality of the fundus image, i.e. whether from a left
or right eye, can be determined by the relative position of the OD in the given
image [13]. Hence, a model possessing L2 skills shall tell the relative OD-fovea
position (L2a) and recognize the laterality (L2b).

e Level 3 (L3): Lesion analysis. Lesions are pathological alterations caused
by varied diseases and can be observed (to some extent) by specific fundus imag-
ing techniques. Recognizing what the lesions are, where they occur, how large
and how many they are id essential for reliable and explainable disease diagnosis.
Consider diabetic retinopathy (DR) grading for instance. A sufficient criterion
for severe nonproliferative DR is the presence of over 20 haemorrhages in each of
the nasal, temporal, superior, and inferior quadrants of the fundus [33]. There-
fore, a model mastering L3 skills shall be able to perform lesion recognition
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Table 1: Statistics of FunBench: 16,348 fundus images and 91,810 visual questions
w.r.t. 10 tasks in total.

#Visual questions

Level Single-ans. Multi-ans. Sample question Data sources
What method was used to capture this image?
1 A. Magnetic resonance imaging,
, 32,696 0 B. Ultra-wide field fundus photography, All datasets
#+Tasks: 2
C. Color fundus photography,
D. Optical coherence tomography.
‘Which eye is shown in this image, the left or the right? [cFe) DDR, DQ?pDRln_‘ IDRID,
L2 10.980 0 A. Right ove OIA-ODIR, Retinal-Lesions
#Tasks: 2 ’ B Lot eoes [UWF] TOP
) e [CFP+UWF] DeepDRID
‘What are the positions of the Haemorrhages in the fundus image?
L3 A. Nasal side of the optic disc center,
4 Tasks: 4 15.606 7,237 B. Tcmp(jml :qld(‘, of the op-mc (.llS(‘, center, [CFP] DDR, IDRID, Retinal-Lesion
N . C. Superior side of the optic disc center, [0cT] RETOUCH
#Subtasks: 39 P P
D. Inferior side of the optic disc center,
E. Not observed in the image.
‘Which abnormalities can be seen in this fundus image? [CFP] DDR, IDRiD, OIA-ODIR,
A. Glaucoma, JSIEC, RFMiD, Retinal-Lesions
L4 20177 5114 B. Diabetic retinopathy, [ocT] NEH, OCTDL, OCTID, UCSD
#Tasks: 4 ’ > C. No abnormality, [Uwr] TOP
D. Age-related macular degeneration, [CFP+0CT] MMC-AMD
E. Hypertensive retinopathy. [CFP+UWF] DeepDRiD

(L3a), localization (L3b), size estimation (L3c) and counting (L3d).

e Level 4 (L4): Disease diagnosis. Disease diagnosis typically requires mak-
ing judgments based on a comprehensive consideration of the lesions presented,
changes in anatomical structures and overall appearance about the fundus. Such
a requirement naturally places L4 skills at the highest level, which typically
takes medical students years to master. Different from tasks from the previous
levels, the L4 tasks specifically evaluate an MLLM’s ability of integrating imag-
ing findings with clinical knowledge for final diagnosis. For example, one of the
diagnostic criteria for age-related macular degeneration (AMD) is the presence
of drusen in the macula. This necessitates the ability to simultaneously identify
both the macula (L2) and drusen (L3), as well as accurately determine their
spatial relationship.

Data Sources In order to instantiate the above four-level tasks, we adapt the
following 14 public datasets: 1) six CFP datasets: IDRiD [24], DDR [17], JSIEC
[2], RFMiD [23], OIA-ODIR [16] and Retinal-Lesions [33], 2) five OCT datasets:
OCTDL [12], NEH [27], OCTID [7], UCSD [11], and RETOUCH [1], 3) one UWF
dataset: TOP?, and 4) two multimodal datasets: MMC-AMD (CFP+0CT) [31] and
DeepDRiD [21] (CFP+UWF).

Subject to their original annotations, the use of the datasets in specific tasks is
listed in Table 1. Note that we take from each dataset its test split* to form Fun-
Bench, with the remaining part preserved as a development set for future usage,
e.g. supervised fine-tuning. Provided with the four lesion-annotated datasets,
i.e. DDR, IDRiD, Retinal-Lesions, and RETOUCH, we subdivide each of the

3 https://github.com/DateCazuki/Fundus_Diagnosis
4 In case no official data split is provided, we randomly select 20% of the dataset.
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four L3 tasks by distinct lesions whenever applicable, resulting in 39 subtasks
in total. Using the multiple disease-annotated datasets, we now instantiate the
L4 skills with 4 concrete tasks, namely binary-condition (normal or abnormal)
diagnosis (L4a), multi-condition diagnosis (L4b), DR grading (L4c) and fine-
grained AMD categorization (L4d).

From Annotations to VQA Quadruples Similar to OmniMedVQA [9], we
generate multi-choice VQA quadruples of (image, question, options, answer)
from given images and their associated labels by auto-completing a number of
predefined task-specific question templates. See samples in Table 1.

To direct the MLLM to select directly from the provided options, we prepend
specific instructions to each question. For single-answer questions, the instruc-
tion is “Please choose the most suitable option based on the image and the ques-
tion. Answer with the option’s letter directly”. For multi-answer questions, the
instruction is “Please choose all the suitable options based on the image and the
question. Answer with the option’s letter directly. Please separate the answers
with commas if needed.”.

2.2 Targeted Evaluation Modes

In order to assess a given MLLM and its two key modules, i.e. LLM and VE, we
present three targeted evaluation modes (E-mode) in a bottom-up manner.

E-Mode I: Linear-probe based VE Evaluation. To assess the effective-
ness of the VE in extracting visual features from a given fundus image, we employ
the widely used linear probe (LP) technique [29]. As illustrated in Fig. 1(b), LP
trains a Linear-layer based classification head per (sub-)task using the task-
specific development dataset. As such, we omit tasks that cannot be directly
tackled as a classification problem, e.g. L3b, L3c and L3d, and tasks trivial for
LP, e.g. L1a and L1b. Comparing VEs used by different MLLMs in this manner
helps reveal which VE is more suited for fundus feature extraction.

E-Mode II: Knowledge-prompted LLM evaluation. As the LLM mod-
ule has been re-trained to handle multimodal tokens, evaluating the module by
directly submitting a textual question is problematic. To reduce the influence of
the VE, we propose a simple knowledge-prompted evaluation strategy as follows.
Given a test image and its associated task-specific label, we convert the label
to an indirect description by querying an expert-knowledge database (EyeWiki).
Such a description is further formatted in a task-specific manner. Consider L2b
laterality recognition for instance. A left-eye image will be described as “fovea
located to the right side of the optic disc”’. As for hard exudate recognition, one of
the subtasks of L3a, the corresponding description will be “white or yellowish
deposits with sharp margins”. As shown in Fig. 1(c), by placing the description
before the question, we perform knowledge-prompted LLM evaluation. Note that
for this evaluation mode, some of the tasks, e.g. L1, L2a and L4a, will be omit-
ted as the provided prompts would make the tasks trivial to accomplish.

E-Mode III: Holistic Evaluation. This mode offers an end-to-end eval-
uation of the MLLM, see Fig. 1(d). By submitting a multimodal multi-option
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Table 2: Open-source MLLMs evaluated. Medical models are marked with .

MLLM HuggingFace release VE LLM
LLaVA-v1.5-7B [18] 2023.10 CLIP-ViT  Vicuna-7B
*Qilin-Med-VL-Chat [20] 2023.12 CLIP-ViT  Chinese-LLaMA2
LLaVA-v1.6-7B [19] 2024.01 CLIP-ViT  Vicuna-7B
*LLaVA-Med-v1.5-7B [14] 2024.05 CLIP-ViT  Mistral-7B
«HuatuoGPT-Vision-7B [3] 2024.06 CLIP-ViT  Qwen2-7B
Qwen2-VL-7B [30] 2024.09 Qwen2-ViT Qwen2-7B
InternVL2.5-8B [5] 2024.12 InternViT  InternLM2.5-7B
Janus-Pro-7B [4] 2025.01 ViT-SigLIP  DeepSeek-LLM-7B
Qwen2.5-VL-7B [28] 2025.01 Qwen2.5-ViT Qwen2.5-7B

question to the model followed by a string comparison between the model’s an-
swer and the ground truth, a binary output is obtained. We found in preliminary
experiments that some MLLMs, e.g. Qilin-Med-VL-Chat [20], LLaVA-Med-v1.5-
7B [14] and Janus-Pro-7B [4], cannot follow our instruction that requires them
to produce a single-character response. Instead, they tend to respond with more
extensive, open-ended text. In order to select the option that best matches with
such text, we perform text-to-text semantic matching by a pre-trained Sentence-
BERT [26], which encodes a given sentence into a 384-d embedding vector.

Performance Metrics An Al-assisted disease diagnosis system naturally aims
for fewer missed detections and false alarms, which can be measured by Sen-
sitivity and Specificity, respectively. We report their harmonic mean, a.k.a. F1
score, as a combined metric. For a multi-class task such as DR grading (L4c),
a task-level F1 is computed as the mean value of F1 scores across all its classes.
Moreover, the overall performance is averaged over the four levels, whilst the
per-level performance is obtained by averaging over the (sub-)tasks and in a
hierarchical manner if subtasks exist as L3. Such a performance calculation ef-
fectively removes any bias caused by imbalanced numbers of subtasks across
different levels.

3 Evaluating MLLMs on FunBench

3.1 Choices of MLLMs

For reproducible research, we focus on open-source MLLMs. Subject to our GPU
computation capability, we select MLLMs at about 7B/8B scales, compiling a
list of six general-purpose and three medical models, see Table 2. In addition, we
include GPT-40 [10] as a proprietary baseline®. We adopt DINOv2-large [22], a
strong vision foundation model, as a VE baseline.

3.2 Results

VE Comparison. The performance of the different VEs is shown in the E-mode
I part of Table 3. DINOv2 is the best, though not used by the MLLMs. By

5 API version: gpt-40-2024-08-06.
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Table 3: Results on FunBench. Per evaluation mode, best numbers per column are
highlighted in bold.

Overall performance L1L: L2: L3: L

Model Modality = Anatomy Lesion Disease

MEAN L1 L2 L3 L4y Lla Lib L2a L20 L3a L3b L3¢ L3d Lja L4ib Ljc Lid
Random guess 0.393 0.313 0.500 0.361 0.397 0.250 0.375 0.500 0.500 0.468 0.458 0.250 0.269 0.500 0.398 0.319 0.372
E-mode I:
CLIP-ViT 0.578 - 0.820 0.373 0.541 - - - 0.820 0.373 - - - 0.814 0.175 0.556 0.621
Qwen2-ViT 0.597 - 0.892 0.338 0.560 - - - 0.892 0.338 - - - 0.814 0.225 0.506 0.694
InternViT 0.614 - 0932 0.392 0.517 - - - 0932 0.392 - - - 0.815 0.230 0.530 0.491
ViT-SigLIP 0.619 - 0.880 0.398 0.581 - - - 0.880 0.398 - - - 0.833 0.293 0.528 0.669
Qwen2.5-ViT 0.651 - 0.9320.449 0.573 - - - 0.932 0.449 - - - 0.812 0.319 0.514 0.645
DINOv2-large 0.655 - 0.939 0.408 0.616 - - -0.939 0.408 - - - 0.858 0.371 0.568 0.669
E-mode II:
Janus-Pro 0.409 - 0.560 0.213 0.454 - - -0.560 0.213 - - - - 0.517 0.446 0.401
Qilin-Med-VL 0.473 - 0473 0.519 0.426 - - - 0473 0.519 - - - - 0.552 0.391 0.334
LLaVA-vl.5 0.487 - 0.386 0.560 0.515 - - - 0.386 0.560 - - - - 0.521 0.557 0.467
LLaVA-Med-v1.5 0.529 - 0.483 0.507 0.597 - - - 0.483 0.507 - - - - 0.638 0.640 0.513
LLaVA-v1.6 0.604 - 0.502 0.717 0.594 - - - 0.502 0.717 - - - - 0.606 0.647 0.529
Qwen2.5-VL 0.654 - 0.497 0.735 0.729 - - - 0497 0.735 - - - - 0.757 0.726 0.704
Qwen2-VL 0.673 - 0.488 0.747 0.783 - - - 0488 0.747 - - - - 0.750 0.855 0.743
HuatuoGPT-V 0.692 - 0.541 0.706 0.829 - - - 0.541 0.706 - - - -0.793 0.927 0.768
InternVL2.5 0.703 - 0.4838 0.831 0.789 - - - 0.483 0.831 - - - - 0.792 0.929 0.647
E-mode III:
Janus-Pro 0.355 0.777 0.167 0.108 0.369 0.943 0.611 0.189 0.145 0.115 0.203 0.060 0.055 0.523 0.319 0.278 0.358
LLaVA-vl.5 0.418 0.722 0.489 0.165 0.296 0.974 0.470 0.492 0.485 0.276 0.266 0.013 0.104 0.364 0.292 0.187 0.341
Qilin-Med-VL 0.426 0.651 0.496 0.211 0.347 0.910 0.392 0.504 0.489 0.463 0.361 0.000 0.019 0.491 0.354 0.214 0.328
LLaVA-v1.6 0.435 0.777 0.449 0.194 0.319 0.970 0.585 0.400 0.497 0.461 0.243 0.058 0.013 0.357 0.314 0.289 0.315
LLaVA-Med-v1.5 0.440 0.813 0.507 0.215 0.223 0.961 0.665 0.502 0.512 0.166 0.349 0.261 0.086 0.000 0.255 0.290 0.345
Qwen2.5-VL 0.480 0.942 0.364 0.231 0.384 0.978 0.906 0.310 0.417 0.386 0.242 0.218 0.077 0.532 0.394 0.303 0.308
InternVL2.5 0.506 0.946 0.564 0.244 0.269 0.997 0.894 0.640 0.488 0.391 0.144 0.227 0.213 0.031 0.400 0.294 0.351
Qwen2-VL 0.520 0.925 0.497 0.316 0.343 0.995 0.855 0.506 0.488 0.503 0.432 0.073 0.255 0.508 0.352 0.202 0.311
HuatuoGPT-V 0.523 0.933 0.309 0.374 0.477 0.961 0.905 0.140 0.477 0.548 0.379 0.338 0.231 0.622 0.504 0.414 0.369
GPT-40 0.542 0.961 0.535 0.341 0.331 0.965 0.957 0.557 0.514 0.362 0.412 0.361 0.228 0.018 0.452 0.476 0.378

contrast, the most popular CLIP-ViT, with mean score of 0.578, has turned
out to be the least effective. Checking its performance per task, we see the
largest performance gap at L4b multi-condition diagnosis, 0.175 versus 0.319
(from Qwen2.5-ViT). Recall that the CLIP series were pre-trained on large-scale
web data for image-text semantic matching. Hence, the CLIP features might
lack fine-grained details required for discriminating dozens of fundus diseases
which typically bear large inter-class similarities. Indeed we notice that for many
diseases at the long tail, the LP-based classifiers built on top of the varied VEs
fail to recognize them, yielding Sensitivity of 0 and consequently zero F'I score.
As such, the performance of the VEs is even worse than chance on L4b. The
result suggests the limitation of pure-vision solutions for fundus image analysis.

LLM Comparison. The LLM result is shown in the E-mode II part of Table
3. The superior performance of InternVL2.5, HuatuoGPT-V and Qwen against
the VE counterpart suggests that their LLMs possess certain ophthalmic knowledge
pertinent to fundus reading. Also notice how their performance varies over tasks,
see for instance L4c DR grading and 4d AMD categorization. The LLMs perform
clearly better on L4c. Our hypothesis is compared to AMD, DR-related materials
are abundant online, making the LLMs more “familiar” with DR. Another empir-
ical evidence supporting this hypothesis is LLMs’ near-to-chance performance on
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Table 4: Correlation analysis in terms of MEAN-performance ranks.

Module Spearman-correlation to MLLM

LLM 0.917
VE 0.055

L2b laterality recognition. Such a skill is too basic to be discussed, making the
related training data rare, and consequently making it a “novel” task for the big
models. The results suggest a fundamental limitation of the current data-driven
paradigm: it produces “powerful” models that lack basic fundus reading skills.

Our setup also supports a decomposition study that evaluates different LLMs
with the same VE, see the following five models in Tab. 2, i.e. LLaVA-v1.5,
Qilin-Med-VL-Chat, LLaVA-v1.6, LLaVA-Med-v1.5 and HuatuoGPT-Vision, all
using the same-weights CLIP-ViT as their VE. HuatuoGPT-Vision is the best,
probably due to its targeted fine-tuning on medical data, particularly excelling
in lesion analysis and disease diagnosis.

MLLM Comparison. The performance of the MLLMs is summarized in
the last part of Table 3. Among the open-source models, HuatuoGPT-Vision is
the best, followed by Qwen2-VL and InternVL2.5. Note that HuatuoGPT-Vision
and Qwen2-VL adopt LLM of the same structure (Qwen2-7B), yet the former’s
VE (CLIP-ViT) is shown to be less effective than that of the latter (Qwen2-ViT).
Such a difference shows the importance of domain-specific fine-tuning. Note that
the relatively inferior performance of HuatuoGPT-Vision on localization-related
tasks, see L2a and L3b. Based on our evaluation, we believe that its performance
is likely to be improved when a stronger VE is used.

As shown in Table 4, the high rank correlation between MLLMs and their
LLMs clearly suggests that the former heavily rely on the latter for performing
the fundus reading tasks. While both VE and LLM are important, the correlation
analysis underscores the urgent need of developing a strong ophthalmic LLM.

In general, the MLLMs evaluated lack fundus reading skills. While the models
perform reasonably well on L1, their effectiveness on L2 is close to random guess.
Given that the L2 tasks are quite basic, this deficiency clearly indicates the lack
of related ophthalmic anatomy knowledge within the LLMs. Model performance
on L3 and L4 is also rather limited. Moreover, the relatively lower performance
under E-mode IIT than E-mode II suggests that the LLMs possess ophthalmic
knowledge to some extent, but fail to correctly interpret visual features presented
in the input image. For more evaluations, please refer to the FunBench website.

4 Conclusions

Our evaluation of varied MLLMs on the new FunBench benchmark supports
conclusions as follows. First, the MLLMs evaluated remain weak for performing
fundus reading tasks related to anatomy perception, lesion analysis and disease
diagnosis. Second, they rely much more on their LLMs rather than their VEs.
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Third, the VEs are less effective than DINOv2. Lastly, the overall best perfor-
mance of HuatuoGPT-Vision shows the importance of domain-specific training.
The future design of the training procedure needs to consider the big picture, or
we risk developing an MLLM that lacks basic fundus reading skills.
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