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Abstract. With the significantly increasing incidence and prevalence of
abdominal diseases, there is a need to embrace greater use of new in-
novations and technology for the diagnosis and treatment of patients.
Although deep-learning methods have notably been developed to assist
radiologists in diagnosing abdominal diseases, existing models have the
restricted ability to segment common lesions in the abdomen due to
missing annotations for typical abdominal pathologies in their train-
ing datasets. To address the limitation, we introduce MSWAL, the
first 3D Multi-class Segmentation of the Whole Abdominal Lesions
dataset, which broadens the coverage of various common lesion types,
such as gallstones, kidney stones, liver tumors, kidney tumors, pancre-
atic cancer, liver cysts, and kidney cysts. With CT scans collected from
694 patients (191,417 slices) of different genders across various scanning
phases, MSWAL demonstrates strong robustness and generalizability.
The transfer learning experiment from MSWAL to two public datasets,
LiTS and KiTS, effectively demonstrates consistent improvements, with
Dice Similarity Coefficient (DSC) increase of 3.00% for liver tumors and
0.89% for kidney tumors, demonstrating that the comprehensive anno-
tations and diverse lesion types in MSWAL facilitate effective learning
across different domains and data distributions. Furthermore, we propose
Inception nnU-Net, a novel segmentation framework that effectively
integrates an Inception module with the nnU-Net architecture to ex-
tract information from different receptive fields, achieving significant en-
hancement in both voxel-level DSC and region-level F1 compared to the
cutting-edge public algorithms on MSWAL. Our dataset and the code
are publicly released at https://github.com/tiuxuxsh76075/MSWAL-.
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1 Introduction

Deep learning-based segmentation methods for abdominal lesions have signif-
icantly assisted radiologists in disease diagnosis [23,21,27,24,25,22], mitigating
the rising demand for patient care and limitations of available resources [18,26].
However, the performance of these methods is highly dependent on the scale and
annotation quality of the datasets, where most datasets [2,7,1] are annotated for
lesions in a single organ, potentially leading to missed diagnoses by doctors.
Specifically, the annotations in CT scan datasets such as LiTS [2], KiTS [7], and
MSD task07 [1] focus on the lesions within individual organs, liver, kidney, and
pancreas respectively. This single-organ lesions annotation paradigm may lead
to diagnostic oversight, as it fails to account for potential lesions in other regions,
thereby increasing the risk of missed diagnoses in clinical practice.

Building on the single-organ annotation datasets, ULS’23 [5] and Flare’23 [15]
integrate a large number of public datasets and categorize all lesions into one
type, pan-cancer, supporting a base to create algorithms to diagnose lesions
in whole abdomen. Nonetheless, due to limitations in re-annotation during the
integration of multiple datasets, many lesion labels are omitted in ULS’23 [5] and
Flare’23 [15]. For instance, ULS’23 [5] simply integrates KiTS [7] and LiTS [2],
where kidney tumors are not annotated in LiTS [2] and liver tumors are not
annotated in KiTS [7]. Such annotation inconsistencies inevitably degrade model
performance by introducing label noise in the training process. Moreover, the
current approach classifies all lesions simply as pan-cancer, forcing doctors to
spend extra time identifying the exact type of each lesion. Furthermore, only
tumors are annotated in the abdomen, with other significant conditions, such as
cysts and stones, are neglected. This oversight can result in missed diagnoses,
affecting the accuracy, timeliness, and effectiveness of clinical decision-making.

Based on these limitations, we propose MSWAL, a 3D multi-class seg-
mentation of whole abdominal lesions dataset, also the world’s first large-scale
common abdominal lesion segmentation dataset with accurate segmentation of
different lesion types and fully annotated without missing labels. There are three
advantages of MSWAL over the public datasets: (I) Common abdominal le-
sions: MSWAL covers seven types of lesions, including gallstones, kidney stones,
liver tumors, kidney tumors, pancreatic cancer, liver cysts, and kidney cysts. (II)
Specific lesion types: We annotate the lesions into seven types instead of la-
beled as pan-cancer. This fine-grained categorization enables deep learning mod-
els to generate more specific diagnostic suggestions, reducing radiologists’ time
in disease identification. (III) Full labels: MSWAL is fully annotated, which
reduces the impact of noise on deep learning methods and enhances their perfor-
mance. Furthermore, we introduce Inception nnU-Net based on this dataset
using Inception module [20], consisting of parallel convolution layers with vary-
ing kernel sizes, enabling comprehensive feature extraction across varying lesion
volumes. Leveraging this advantage, Inception nnU-Net achieves SOTA perfor-
mance on MSWAL, demonstrating its ability in various lesions segmentation.

The main contributions are listed as follows: (I) We propose MSWAL, the
first 3D multi-class segmentation of the whole abdominal lesions dataset. It has
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Fig. 1: Data distributions and an example of MSWAL. (a) gender distribution
(male and female); (b) phase distribution (non-contrast, arterial phase, venous
phase, portal venous phase, and delayed phase); (c) diameter statistics. The
Lesions are categorized into large and small based on a diameter threshold of 2
cm; (d) diameter distribution; (e)-(h) an example of MSWAL: (e) axial plane;
(f) coronal plane; (g) 3D show; (h) sagittal plane.

the advantage that seven types of common abdominal lesions are annotated on
MSWAL with full labels and lesion types are categorized into various classes.
(II) The transfer learning experiment result demonstrates the superior gener-
alization capability of MSWAL across diverse clinical scenarios, particularly
in lesion segmentation tasks with varying anatomical contexts. (III) The novel
model Inception nnU-Net fusing the advantages of nnU-Net architecture and
Inception module [20] to extract information on different types of lesions is pro-
posed. Our comparative experiment shows that it achieves SOTA performance
on MSWAL, which validates its effectiveness. (IV) We establish a new bench-
mark on MSWAL to assess the performance of six cutting-edge methods.

2 MSWAL

Dataset Statistical Analysis. MSWAL contains 694 CT scans (191,417
slices) from 694 patients at one hospital. Each CT scan consists of 52 to 1,089
slices of 512 × 512 pixels, demonstrating the high resolution of MSWAL. The
majority of the data are acquired by a 64-slice Computed Tomography scanner
manufactured by GE Healthcare, with a small subset collected from other imag-
ing devices. The dataset is randomly split into a training set of 484 volumes and
a testing set of 210 volumes, maintaining an approximate 7:3 ratio. As Fig. 1
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Table 1: The comparison between public datasets and MSWAL.
dataset CTs AL NSD FL SLT GS KS LT KT PC LC KC
BTCV [11] 50 Null ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CHAOS [10] 20 Null ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CT-ORG [16] 140 Null ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WORD [14] 170 Null ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RAOS [13] 413 Null ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

AbdomenAtlas 1.1 [12] 20,460 Null ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

LiTS [2] 201 1,372* ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

KiTS [7] 599 1,406* ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓

MSD task07 [1] 420 423* ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

ULS’23 [5] 6,994 1,618 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Flare’23 [15] 4500 ∼ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MSWAL (Ours) 694 5,212 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AL: Annotated Lesions refers to the number of lesions labeled by the authors, excluding those
annotated before from other datasets. This distinguishes our work from datasets that primarily
rely on external annotations. NSD: New Source Data means whether all original volumes are
released at the first time. FL: Full Label means there is no missing annotation on the target
regions. SLT: Specific Lesion type is given ✓if diseases are categorized into specific types instead
of pan-cancer. GS: Gallstones; KS: Kidney Stones; LT: Liver Tumors; KT: Kidney Tumors; PC:
Pancreatic Cancer; LC: Liver Cysts; KC: Kidney Cysts. * displays incomplete statistics because
the paper does not give this information. ∼ means the data can not be calculated.

(a) shows, MSWAL exhibits a balanced gender distribution in our dataset, with
374 (53.9%) male and 320 (46.1%) female patients. Furthermore, MSWAL also
has comprehensive coverage across multiple CT contrast phases, as illustrated
in Fig. 1 (b), including non-contrast (261, 38%), arterial phase (261, 38%), ve-
nous phase (71, 10%), portal venous phase (64, 9%), and delayed phase (37,
5%). Beyond demographic and imaging protocol diversity, MSWAL contains
detailed annotations for seven clinically significant lesion types: gallstones (215
instances), kidney stones (415 instances), liver tumors (767 instances), kidney
tumors (240 instances), pancreatic tumors (117 instances), liver cysts (2,287 in-
stances), and kidney cysts (1,171 instances). Following the WHO measurement
standard, lesions are categorized by size, with those exceeding 2 cm in diameter
classified as large, as visualized in Fig. 1 (c). The corresponding size distribution
across all lesion types is presented in Fig. 1 (d). Fig. 1 (e-h) display three orthog-
onal views of an example and a 3D visualization from our dataset. Although we
do not annotate the organs, their labels are inferred by nnU-Netv1 trained on
WORD dataset [14] to display our annotation of lesions more clearly. Further-
more, to highlight the advantages of MSWAL, comparisons between MSWAL
and public datasets are shown in Table 1.

Ground Truth Generation. During the process of dataset collection, all data
are validated by the ethics committee under approval number XXX (anonymized
requirements). To guarantee the high quality of MSWAL, all CT scans are an-
notated by an attending physician (with over 10 years of clinical experience) us-
ing 3D slicer’s semi-automatic function [4]. Specifically, after annotating several
slices in the axial, sagittal, and coronal views, the physician generates the initial
3D annotations, which are then carefully adjusted to modify the boundaries.
Subsequently, another chief physician (with over 20 years of clinical experience)
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Fig. 2: The left architecture is Inception nnU-Net, whose Bottleneck Block is
Encoder Block apart from Inception Downsampling. (a) Mini Inception, a com-
ponent of Inception nnU-Net (b) Inception Downsampling, another module of
Inception nnU-Net. Both Mini Inception and Inception Downsampling have two
branches, called branch left and branch right.

checks the annotations and further discusses the inconsistent ideas of lesion re-
gions with the attending physician. It takes 11 months to label and review the
MSWAL. According to our statistics, each volume averagely takes 1.1 hours to
annotate and requires 0.3 hours to review and discuss. It is worth noticing that
the doctors categorize lesions into seven types, the dataset has no missing labels,
and all original volumes are released for the first time.

3 Inception nnU-Net

Mini Inception. The Inception module [20] employs convolutional layers with
varying kernel sizes to extract multi-scale features from different receptive fields.
Inspired by this design, we propose Mini Inception, a compact module that re-
tains the core functionality of the original Inception module [20] while simplifying
its structure. As shown in Fig. 2 (a), Mini Inception incorporates a residual con-
nection, represented as the central arrow, and two parallel branches: In the left
branch, a 3× 3× 3 convolutional layer is applied, followed by batch normaliza-
tion and a ReLU activation layer. Subsequently, another 3× 3× 3 convolutional
layer is employed, accompanied by batch normalization. In the right branch, a
1×1×1 convolutional layer is utilized to capture features from different receptive
fields, followed by batch normalization. This is then succeeded by an additional
1× 1× 1 convolutional layer and batch normalization. Compared to the original
Inception module [20], Mini Inception reduces the number of branches to two,
utilizing only two kernel sizes (3 × 3 × 3 and 1 × 1 × 1) while maintaining the
ability to extract multi-scale information effectively.
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Table 2: The comparative experiment between Inception nnU-Net and six SOTA
methods in terms of DSC(%) and F1(%) with IOU (threshold = 0.5) on
MSWAL. The average score means the mean value of Inception nnU-Net and
six SOTA methods on MSWAL. We calculate the average score to evaluate the
relative difficulty of various types of lesions segmentation, with lower average
scores indicating harder diagnostic challenges for specific diseases. Bold and
underline denote the best and second-best results, respectively.

lesion
method Inception

nnU-Net (Ours)
nnU-Netv1

[8]
nnU-Netv2

[8]
nnU-Net
res [9] Mednext [17] nnFormer [28] Swin

UNETR [6]
Average
score

DSC F1 DSC F1 DSC F1 DSC F1 DSC F1 DSC F1 DSC F1 DSC F1
Gallstone 57.12 52.46 45.54 44.36 33.60 38.26 55.95 57.81 60.27 64.61 42.96 38.23 36.48 36.81 47.41 47.50
Kidney stone 35.75 25.67 22.86 15.83 23.13 16.70 31.47 23.70 37.11 32.46 37.84 31.98 33.84 23.96 31.71 24.32
Liver tumor 58.53↑2.53 23.05↑2.48 29.42 10.23 40.74 14.22 56.00 20.57 45.10 17.50 42.51 18.15 27.52 11.37 42.83 16.44
Kidney tumor 44.08 27.69 21.05 12.24 40.47 18.67 45.41 29.00 46.58 22.11 37.82 26.11 16.02 23.13 35.91 22.70
Pancrea cancer 48.77 44.44↑3.54 27.28 23.89 37.40 36.20 54.64 40.90 43.68 37.89 42.20 39.04 19.43 20.98 39.05 34.76
Liver cyst 58.47↑2.23 45.51↑1.74 38.59 37.67 36.56 40.45 56.24 43.77 41.59 41.69 46.85 40.80 37.16 33.89 45.06 40.54
Kidney Cyst 47.87↑0.19 58.14↑1.71 41.95 46.47 40.90 50.39 47.68 56.43 45.23 51.33 30.53 50.76 28.14 33.92 40.32 49.63
Avg. 50.09↑0.46 39.56↑0.68 32.38 27.24 36.11 30.69 49.63 38.88 45.65 38.22 40.10 35.01 28.37 26.29 40.32 33.69

Inception Downsampling. To capture multi-scale features during downsam-
pling, we introduce Inception Downsampling, a novel module designed to extract
information from various receptive fields. Like Mini Inception, the central arrow
in Fig. 2 (b) represents the residual connection. The module consists of two paral-
lel branches for feature extraction: In the left branch, a convolutional layer with
a stride of 2 is employed for downsampling, followed by batch normalization.
Subsequently, a ReLU activation, a 3× 3× 3 convolutional layer, and batch nor-
malization are applied. An average pooling layer with a stride of 2 is used in the
right branch, followed by a 1×1×1 convolutional layer and batch normalization.
This design allows Inception Downsampling to effectively aggregate multi-scale
information, making it suitable for segmenting lesions of varying sizes.

4 Experiments and Results

Implementation Details. All experiments are conducted using the RTX 4090.
Our proposed model, Inception nnU-Net, uses nnU-Net’s pre-processing with an
initial learning rate of 0.001 and a total of 1,500 training epochs. In the pa-
rameter settings, M is equal to six while N is different in every block. In our
training process, we employed a linear decay learning rate schedule to adjust the
learning rate. In the evaluation stage, two metrics are used: voxel overlap-based
metric Dice similarity coefficient (DSC) and region-level F1 with an Intersection
over Union (IOU) threshold of 0.5. It is worth noting that region-level F1 is
used because we observed that there are many region-level false positives and
false negatives during inference. Compared to predicting the wrong boundaries,
predicting the wrong regions will bring more misleading information for doc-
tors. This is why the region-level F1 score, highly sensitive to region-level false
negatives and false positives, is adopted as a key metric for model evaluation.

Comparative Experiment. We investigate Inception nnU-Net and six public
SOTA 3D medical image segmentation methods on MSWAL, including nnU-
Netv1 [8], nnU-Netv2 [8], nnU-Net res [9], Mednext [17], nnFormer [28], and
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Swin UNETR [6] as shown in Table. 2. The comparative experiment clearly
shows Inception nnU-Net’s advantages over the existing models, as illustrated by
the example in Fig. 3. With existing methods exhibiting significant limitations in
accurately predicting blurry boundaries and often generating false negative and
false positive regions, our proposed method, Inception nnU-Net, demonstrates
superior performance in region and boundary prediction. Notably, our analysis
based on average scores reveals that segmenting kidney stones and kidney tu-
mors is the most challenging task among the seven types of lesions studied. This
difficulty persists even though pancreatic cancer, which is clinically considered
the most complex condition [19,3], achieves or approaches the average DSC and
F1 scores. The relatively better performance in pancreatic cancer segmentation
can be attributed to the simpler annotation scheme, as only one type of lesion
is annotated in the pancreas. In contrast, the kidney presents a more complex
scenario with three distinct lesion types: kidney stones, tumors, and cysts. Cru-
cially, this complexity is further compounded by a significant class imbalance
in the dataset, where kidney cysts are overrepresented (1,171 instances) com-
pared to kidney stones (415 instances) and kidney tumors (240 instances). The
disproportionate distribution of lesion types and the mutual influence of multi-
ple lesions within a single organ present a particularly significant challenge in
our study (MSWAL). This interplay of factors underscores the complexity of
multi-lesion segmentation tasks in medical imaging analysis. Therefore, based
on this, we suggest that future researchers carefully explore the issues of mutual
interference among lesions and the long-tail problem in the MSWAL task.

Ablation Experiment. We evaluate the impact of different modules in In-
ception nnU-Net on medical segmentation performance in MSWAL as Table 3
shows. The baseline model, illustrated in variant I, removes two key modules:
branch left in Inception Downsampling and branch right in Mini Inception, and
the residual connection in Mini Inception. This results in a significant DSC drop
by 1.07%, highlighting their importance. In variant II, removing only the branch
left in Inception Downsampling reduces the DSC to 49.46%. This result shows
that compared to other components, this one is the most critical, as it signif-
icantly increases the DSC value by 0.63%. Variant III involves removing the
branch right in Mini Inception, which decreases the DSC to 48.83%. The 0.26%
improvement in DSC underscores the importance of this component. Variant IV
shows that removing the residual connection in Mini Inception causes a minor
DSC decrease by 0.07%. Finally, in variant V, restoring all components achieves
the highest DSC score, 50.09%. This validates the effectiveness of the full In-
ception nnU-Net model, particularly underscoring the critical roles of Inception
Downsampling and Mini Inception modules in enhancing segmentation accuracy.

Transfer Learning Experiment. Models trained on extensive and high-
quality datasets are expected to have enhanced transfer learning capabilities,
improving generalization across relevant sub-domains. We conduct the trans-
fer learning experiment to validate the efficiency of MSWAL for algorithms in
transfer learning scenarios. We choose the public SOTA method, nnU-Net res [9]
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Fig. 3: Visualization of the segmentation results from different methods. The
yellow arrows point to the shortcomings of the six cutting-edge models in terms
of edge segmentation, or to the regions of false positives and false negatives.
Table 3: Ablation experiment of Inception nnU-Net in terms of DSC(%) and
F1(%) with IOU (threshold = 0.5) on MSWAL. Inception Downsampling:
Branch left in Inception Downsampling. Mini Inception: Branch right in Mini
Inception. Residual connection: Residual connection in Mini Inception.

Variants Inception
Downsampling

Mini
Inception

Residual
connection DSC F1

I ✗ ✗ ✗ 49.02 38.39
II ✗ ✓ ✓ 49.46 38.78
III ✓ ✗ ✓ 49.83 39.23
IV ✓ ✓ ✗ 50.02 39.42
V ✓ ✓ ✓ 50.09 39.56

as the baseline method with two training configurations: (I): the model is trained
on LiTS [2] and KiTS [7] without transfer learning. (II): the model is firstly pre-
trained on MSWAL then fine-tune on LiTS [2] and KiTS [7]. Since the official
testing sets of LiTS and KiTS are not released, we split the training sets into
new training sets and test sets in an 8:2 ratio. As shown in Table. 4, we find that
although the organs segmentation improvement is not obvious, i,e., DSC of the
liver in LiTS increases from 96.79% to 96.82% and kidney in KiTS increases from
95.42% to 95.49%, the lesions segmentation improvement is significant. In LiTS,
the DSC of liver tumors increases from 71.40% to 74.40%. In KiTS, the DSC of
kidney tumors increases from 88.50% to 89.39%, and kidney cyst increases from
43.57% to 44.04%. The great improvement demonstrates MSWAL’s robustness
and generalization, especially for the abdominal lesion segmentation.

5 Conclusion

In this paper, we introduce MSWAL, a large-scale dataset comprising 694
patients (191,417 slices) for segmenting seven types of abdominal lesions. To
highlight its robustness and generalization, we explore the domain gap between
MSWAL and two public datasets (LiTS and KiTS). Furthermore, we propose
the novel Inception nnU-Net framework, designed to capture information across
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Table 4: Transfer learning from MSWAL to LiTS and KiTS using nnU-Net res.
Dataset MSWAL → LiTS MSWAL → KiTS
Task Liver Liver tumor Kidney Kidney tumor Kidney cyst
DSC 96.79 → 96.82 71.40 → 74.40 95.42 → 95.49 88.50 → 89.39 43.57 → 44.04
Improve ↑0.03 ↑3.00 ↑0.07 ↑0.89 ↑0.47

varying receptive fields. The comparative experiment demonstrates the effec-
tiveness of Inception nnU-Net, with improvements of 0.46% in DSC and 0.68%
in F1-score, showcasing its superior region-level segmentation capabilities on
MSWAL. However, the lack of integration with whole abdominal lesion report
generation tasks is a limitation of MSWAL, which we aim to address in future
work to enhance the dataset’s utility and comprehensiveness.
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