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Abstract. Medical imaging provides a wealth of information about a patient's 

physical condition, and Imaging-derived phenotypes (IDPs) extracted from med-

ical images have applications in various biomedical tasks such as disease predic-

tion and phenotype association studies. For disease prediction tasks, the collec-

tion of multimodal imaging data and the conduct of long-term follow-ups are 

crucial; however, the low incidence rates of certain diseases make it challenging 

to acquire large-scale cohort data. On the other hand, cohorts that contain ge-

nomics and blood-based biomarkers are relatively extensive. Against this back-

drop, large-scale cohort data from the UK Biobank (UKB) were leveraged to 

construct prediction models for 260 IDPs extracted from common brain MRI and 

cardiac MRI using machine learning methods combined with genomics and basic 

blood characteristics. We applied these models to impute IDPs in cohorts missing 

imaging data and utilized the imputed IDPs for IDP-disease association studies 

and disease prediction. Association study results demonstrate that the imputed 

IDPs can reveal numerous IDP-disease associations. Furthermore, the disease 

prediction models developed using imputed IDPs demonstrated significantly su-

perior performance across 184 common diseases, as evidenced by higher overall 

AUC values when compared to models utilizing real IDPs (Wilcoxon signed-

rank test, p < 0.001). These results clearly highlight the significant application 

value of our IDPs prediction models in the context of disease discovery. 
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1 Introduction 

Medical imaging, a crucial component of modern healthcare, enables visualization of 

the body's internal structures and functions. Techniques like X-ray, CT, and MRI pro-

vide detailed images and are essential for disease diagnosis, treatment planning, and 

patient monitoring. In biomedical applications such as disease prediction, medical im-

ages cannot be directly utilized as information sources but require undergoing image 

processing and information extraction [1]. Imaging-derived phenotypes (IDPs) are phe-

notypic information extracted from medical images using specific processing pipelines 

[2], which possess specific significance and can participate in tasks such as biomedical 

modeling. Currently, IDPs have been applied to multiple biomedical fields such as phe-

notype prediction [3, 4] and phenotype association study [5, 6], confirming the signifi-

cant importance of IDPs in biomedical research. 

However, for disease prediction tasks, the collection of multimodal imaging data and 

long-term follow-up are essential, but are often limited by the low incidence rates of 

certain diseases. This makes it difficult to obtain large-scale cohort data with complete 

IDPs. Although many general-purpose data imputation methods, such as K-nearest 

neighbors (KNN) imputation and regression-model-based imputation [7], have been 

developed, most of these approaches rely on prior knowledge of partially observed phe-

notypes. In the field of omics research, imputation methods for partially or completely 

missing data have been developed for various omics data [8]. For example, Zhou et al. 

developed a framework for predicting RNA-sequencing data from DNA methylation 

[9], Ansari et al. developed an approach for optimizing multi-omics data imputation 

with NMF and GAN synergy [10]. In addition, Xu et al. utilized single nucleotide pol-

ymorphism (SNP) data to develop polygenic score maps for multiple omics data and 

trained polygenic score models using the Bayesian ridge regression model to predict 

omics features [11]. However, to our best knowledge, there is a lack of effective data 

prediction methods for cohorts with completely missing IDPs. 

To address the challenge of missing IDPs data in large-scale cohorts, referring to the 

research approach of Xu et al. [11], we integrated more widely available SNP data and 

low-cost basic blood characteristics (including blood counts and blood biochemistry) 

and adopted an ensemble learning approach [12] to build multiple two-layer stacked 

models to impute IDPs. Predictive models for 260 brain T1, brain SWI, and cardiac 

MRI-derived phenotypes were developed and achieved good IDPs prediction perfor-

mance. Subsequently, we applied our models to the UKB European population cohort 

without IDPs, predicted their brain and cardiac IDPs. Utilizing the real IDPs cohort and 

the imputed IDPs cohort, an IDP-disease association study was first conducted. It was 

found that the imputed IDPs were capable of identifying numerous IDPs-disease asso-

ciations. This reveals that the imputed IDPs can offer insights into the associations be-

tween IDPs and diseases within cohorts lacking IDPs. These insights are advantageous 

for the implementation of explanatory research. Finally, we utilized the imputed IDPs 

for building disease prediction models, and compared the performance of disease pre-

diction models based on imputed IDPs with those based on real IDPs. The evaluation 

results indicated that models based on imputed IDPs demonstrated better disease pre-

diction performance, highlighting the value of imputed IDPs in application. 
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2 Materials and Methods 

2.1 Data Collection 

 

Fig. 1. Overall workflow of the study. (a) Collection of multimodal datasets. (b) Build and apply 

IDPs prediction models. (c) Downstream applications of imputed IDPs cohorts, including IDP-

Disease association study and disease prediction. 

Datasets. A total of 260 IDPs were selected, including 164 T1-weighted structural brain 

MRI-derived IDPs, 14 susceptibility-weighted brain MRI-derived IDPs, and 82 cardiac 
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and aortic structure/function IDPs from the UKB imaging pipeline. Sixty-one blood-

based traits from the UKB blood assay were also included, comprising 31 blood count 

features and 30 blood biochemical features. We performed z-score standardization on 

the IDPs data and blood-based traits data and applied KNN imputation to impute the 

missing values. 

For disease association and prediction analysis, we identified 184 diseases within 

the cohort possessing confirmed IDPs, each with at least 50 incident cases. These dis-

eases spanned diverse categories to evaluate the utility of imputed IDPs in disease-

related research comprehensively. 

Publicly available Genome-Wide Association Study (GWAS) summary statistics for 

82 cardiac IDPs [13] and 178 brain IDPs [14] were obtained to support IDPs prediction 

analyses. We selected SNPs from the GWAS summary statistics for each IDP with p-

values less than 0.001 and used the reference genome SNP file from Functional Map-

ping and Annotation of Genome-Wide Association Studies (FUMA GWAS) [15] to 

process linkage disequilibrium with PLINK2 [16], filter SNPs, and extract the SNP 

dosage matrices. 

Quality Control. We utilized population cohort data from the UK Biobank. Initially, 

we selected samples from individuals of European ancestry. Individuals with missing 

values exceeding 20% in either blood-based or imaging-derived phenotypic data were 

excluded. Only samples with both blood and genomic data were included. Based on the 

availability of IDPs, the cohort was divided into two groups: 28,615 individuals with 

confirmed IDPs and 350,555 individuals lacking IDPs for downstream analyses. 

2.2 IDPs Prediction Models 

In constructing the IDPs prediction models, we adopted an ensemble learning approach 

to build a two-layer stacked model. In the first layer, we trained a Bayesian ridge re-

gression (BR) model for SNP data, blood count data, and biochemical data separately. 

In the second layer, we used the inputs from the three models in the training set as 

features to train a BR model. A separate stacked model was trained for each IDP. We 

employed five-fold cross-validation and calculated the R2 and Spearman correlation 

for each IDP prediction model as performance metrics. 

2.3 Disease Discovery Analysis 

Phenotype-Disease Association Study. We employed Cox proportional hazards re-

gression models, adjusting for age, sex, body mass index (BMI), and smoking status as 

covariates, to examine the associations between both real and imputed IDPs and the 

184 previously identified diseases. The statistical significance of these associations was 

determined using a false discovery rate (FDR) threshold of 5% for multiple testing cor-

rection. 
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Disease Prediction Models. We employed L1-regularized logistic regression models 

to construct disease prediction models for the 184 diseases in both the imputed IDPs 

cohort and the real IDPs cohort. In the real IDPs cohort, the training set and test set 

were divided in a 7:3 ratio. In the imputed IDPs cohort, all samples were used as the 

training set. The test sets divided from the real IDPs cohort are utilized for model testing 

in both models. To address sample imbalance in the training set, random down-sam-

pling was used to equalize the number of minority and majority class samples. Due to 

the randomness of down-sampling and dataset splitting, we ran the process ten times 

with different random seeds to ensure the reliability of the results. We used AUC, ac-

curacy, specificity, and recall as evaluation metrics. 

3 Results 

3.1 IDPs Prediction Model 

 

Fig. 2. Evaluation results of the IDP prediction model. SNP, BC, and BBC denote single nucle-

otide polymorphism data, blood count data, and blood biochemistry data, respectively. Hyphen-

ated terms indicate data integration. Panels (a) and (b) show the distribution of R² values and 

Spearman correlation coefficients for brain T1, brain SWI, cardiac, and overall IDPs predictions 

using SNP data alone, blood data alone, and the integration of SNP and blood data. Panels (c) 

and (d) show the interval distribution of R² values and Spearman correlation coefficients for 

overall IDP predictions and imputation, respectively. 

We developed a two-layer stacked model incorporating Bayesian ridge regression (BR) 

to predict 260 MRI-derived brain and cardiac IDPs using SNPs and blood-based bi-

omarkers. Model performance was rigorously evaluated through five-fold cross-valida-

tion, with comprehensive results presented in Figure 2. 
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For comparative analysis, we constructed three distinct model configurations: SNP-

only models, blood biomarker-only models, and integrated models combining both mo-

dalities. As shown in figure 2, the integrated models demonstrated superior predictive 

performance compared to single-modality approaches, with coefficients of determina-

tion (R²) predominantly distributed between 0.1-0.5. Spearman correlation coefficients 

between imputed and real IDPs were predominantly in the range of 0.3 to 0.6, with 

select instances approaching 0.8. Notably, cardiac IDPs exhibited enhanced predicta-

bility in integrated models compared to cerebral IDPs, as evidenced in Figure 2a. These 

results substantiate our biological hypothesis regarding the combined genetic and blood 

regulation of IDPs, while demonstrating the feasibility of multimodal data prediction 

for imaging-lacking cohorts. 

3.2 IDP-Disease Association Study 

 

Fig. 3. Results of the IDP-disease association study. (a) Disease-IDP correlation results derived 

from real IDPs data. (b) Disease-IDP correlation results derived from imputed IDPs data. The -

log10(p - value) of associations that exceeded 50 (for real IDPs) or 500 (for imputed IDPs) or 

were displayed as 0 are set to 50 (for real IDPs) or 500 (for imputed IDPs). (c) Comparison of 

average number of Significant IDPs between imputed IDPs and real IDPs, disease types were 

ranked according to number of significant real IDPs. 

To investigate clinical relevance, we conducted phenome-wide association studies 

(PheWAS) between IDPs and 184 diseases (prevalence > 50 cases in the 28,165-subject 

imaging cohort). Analyses encompassed both real IDPs from 28,165 subjects with MRI 

data and imputed IDPs extrapolated to 350,555 subjects (Figure 3). The imputed IDPs 

cohort exhibited substantially more significant associations (P < 0.05, FDR-corrected) 
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than the observed cohort. While real IDPs primarily revealed associations with circula-

tory system diseases, imputed IDPs demonstrated polygenic associations across multi-

ple disease categories. We also compared the average number of significantly associ-

ated IDPs per disease for real and imputed IDPs across disease types. Figure 2(c) shows 

a ranking correlation in the average disease-associated IDPs between real and imputed 

IDPs. Spearman correlation analysis revealed a significant correlation (p = 0.004, rho 

= 0.758), indicating a ranking correlation and overall trend consistency in the large-

scale disease-IDPs association results. However, differences exist in the significant 

IDPs identified by the two types of IDPs. 

3.3 Application of imputed IDPs in Disease Prediction 

The principal advantage of phenomics cohort expansion lies in its capacity to substan-

tially increase sample size, thereby enhancing disease prediction modeling. We devel-

oped disease prediction models for 184 selected clinical conditions using L1-regular-

ized logistic regression, separately employing: 1) imputed IDPs from the expanded co-

hort of 350,555 subjects, and 2) real IDPs from the original 28,615-sample cohort. Cru-

cially, both models were evaluated on an identical test set with real IDPs measurements 

to ensure reliable assessment of predictive enhancement through cohort expansion. To 

mitigate stochastic influences from data partitioning and random subsampling, we con-

ducted ten independent model iterations with varying random seeds. The consolidated 

evaluation metrics across these iterations are systematically presented in Figure 4. 

We integrated the evaluation results of two models across 184 diseases and per-

formed Wilcoxon signed-rank tests to compare the performance metrics (accuracy, 

AUC, recall, and specificity) between models constructed using real IDPs versus im-

puted IDPs. The results demonstrated that disease prediction models based on imputed 

IDPs from large-scale cohorts exhibited significantly superior overall performance 

compared to those built with real IDPs data, despite our imputed IDPs models being 

tested against real IDPs that theoretically differ in distribution characteristics. Subse-

quent disease category-specific AUC comparisons revealed that models utilizing im-

puted IDPs from large-scale cohorts outperformed those based on small-scale real IDPs 

data in all disease categories (all p-values < 0.001). 

Combined with the outstanding performance in Spearman correlation coefficients of 

the IDPs prediction models mentioned in Section 3.1, these findings suggest that alt-

hough substantial improvements remain in the absolute value accuracy of imputed 

IDPs, their superior rank correlation might enable logistic regression-based disease pre-

diction models to benefit from the positive weighting effects afforded by expanded co-

hort sizes during training. This mechanism could facilitate the development of more 

accurate and effective models. This discovery substantiates the value of constructing 

imputed IDPs-based models, representing a kind of data augmentation [17] method for 

expanding training samples. These insights may provide valuable guidance for future 

directions in enhancing the performance of prediction models. 
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Fig. 4. Comparison of evaluation results of disease prediction models built on 184 diseases using 

real IDPs and imputed IDPs. (a) Overall evaluation metrics of the two models across 184 dis-

eases, with values averaged over ten repeated random seeds. (b) Comparison of the distribution 

of disease prediction AUC for each disease type between the two types of models. 

4 Discussion and Conclusion 

Drawing upon previous research frameworks that utilized genomic SNP signatures for 

multi-omics prediction [11], this study established predictive models for 260 IDPs un-

der the biological hypothesis that human IDPs are jointly influenced by genetic and 

environmental factors. Leveraging multimodal data from the UK Biobank (UKB), we 

integrated SNPs and fundamental blood-based biomarkers to develop robust predictive 

models with satisfactory performance. These models were subsequently applied to 

large-scale population cohorts lacking direct IDP measurements to generate predicted 

IDP values for downstream analyses.  

Our results demonstrated the utility of imputed IDPs in two critical disease discovery 

applications: First, the imputed IDPs successfully identified substantial IDP-disease as-

sociations, confirming their capacity to expand phenotype-disease insights for cohorts 

without imaging data. Second, disease prediction models constructed using imputed 

IDPs exhibited significantly superior performance compared to those based on real 

IDPs. We infer this enhancement primarily stems from the expanded training sample 

size enabled by imputed IDPs, effectively achieving feature-based data augmentation.  

Nevertheless, this study has inherent limitations. First, we did not compare the per-

formance of various machine learning models, and the existing model architecture may 

not be optimal. Second, the lack of classification and in-depth discussion on IDPs has 

limited the research depth. Finally, while expanding the sample size likely contributes 
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to the improved performance of prediction-based disease models, our preliminary anal-

ysis did not fully explore other potential mechanisms underlying this phenomenon. Fu-

ture studies could enhance IDP prediction efficacy by comparing the performance of 

multiple models. Additionally, investigating the reasons for varying prediction difficul-

ties among different IDPs, conducting in-depth discussions on the roles of different 

modalities, analyzing the contribution of specific SNPs in prediction, and exploring 

how IDP prediction improves the performance of disease prediction models would en-

hance both the research depth and biological significance. 

In summary, this study established predictive models for 260 IDPs by integrating 

genetic and blood-based biomarkers, demonstrating their utility in expanding pheno-

type-disease insights and enhancing disease prediction performance, thereby validating 

their application potential in the field of disease discovery. 
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