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Abstract. Video recording of open surgery is in great demand for ed-
ucation and research purposes but is challenging due to the busy and
dynamic environment. The state-of-the-art system uses multi-view cam-
eras installed in shadowless lamps (McSL) and implements an automatic
camera switching algorithm to avoid disturbances. However, this algo-
rithm leads to missing pixels and distorted projection due to mathemat-
ical image warping and does not always provide the best perspective.
We propose using 4D Gaussian Splatting (4DGS) to create editable 3D
videos and remove Gaussians occluding surgical fields from a perspec-
tive. We enable occlusion-free 3D videos by addressing two occlusion re-
moval approaches via (1) occlusion masking and (2) density-based Gaus-
sian filtering. We create a real-surgery dataset and demonstrate that our
method outperforms the state-of-the-art auto view-switching approach.
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1 Introduction

Recording open surgeries as videos can provide objective visual information in
addition to conventional medical records. While videos are acknowledged for
their value in knowledge transfer and research [5,9], configuring a method to
capture video from the desired angle without obstructing is challenging. Endo-
scopic and robotic surgeries offer egocentric views with minimal obstructions [22].
However, room-installed cameras in open surgeries provide only fixed viewpoints
and suffer from potential disturbances (e.g., surgeons) [10].

Egocentric cameras are a standard approach but suffer from frequent and
drastic motions, causing unclear and unstable vision [16, 18]. More recent ap-
proaches use either a single camera [3] or multiple cameras [25] on a shadowless
lamp to record views directly above surgical fields of interest. The multi-camera
shadowless lamp (McSL) setup increases the chance of capturing a surgical
field of interest with any cameras. Toward occlusion-free video generation us-
ing McSL, this unique setup leads to two challenges: automatic multi-camera
calibration [11] and occlusion avoidance [11,25].
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In this paper, we address occlusion removal rather than avoidance for dy-
namic videos [11]. Conventional approaches evaluate individual views for the
least occlusions and concatenate selected views for a longer video. However,
their 2D image warping for stable view switching results in distorted views and
missing pixels around image borders. Instead, we propose using 4D Gaussian
Splatting (4DGS) [28] to create fully editable 3D videos and remove Gaussians
occluding those of surgical fields from a perspective. We enable occlusion-free
3D videos by addressing two occlusion removal approaches for 4DGS via (1)
occlusion masking and (2) density-based Gaussian filtering. As a byproduct of
4DGS, our open surgery videos are in 3D, allowing changing viewpoints around
McSL.

To validate our approaches, we create a dataset of videos with and without
occlusion. We propose extracting obstacles in a video and synthesizing them
into other parts of the video with no occlusions. We use the original and head-
synthesized videos as ground truth and input videos, respectively. This approach
creates a spatially and temporally consistent evaluation dataset?.

The contributions of this paper are summarized as follows:

e We propose a 3D video generation pipeline for open surgery with McSL using
4D Gaussian Splatting. This enables both occlusion removal and surgical
field visualization from any viewpoint.

e To this end, we introduce occlusion removal modules that eliminate occluded
regions at the level of gaussian splats.

e To evaluate our approach for the new task, we created a synthetic dataset.

e We report the results of an expert review study and discuss the challenges
of our method and its variants.

2 Related Work

2.1 Surgical Video Recording and Processing

Robotics [4] and virtual/augmented reality (VR/AR) technology [6,13] are known
to offer more effective and efficient education than traditional ones, while they
have been facing challenges in costs and accessibility. As such, video recording,
meanwhile, has been a practical and widely accepted approach.

Head-attached cameras are the most common configuration, but mobile cam-
eras move too fast and have limited battery life [16,18,21,27]. Fixed and wired
solutions allow stable recording with enough electricity for hours of record-
ings [14,19]. However, positioning is critical to avoid significant interferences
during the surgery, which is only feasible with a dedicated operator in reality.

Shimizu et al. developed McSL to directly record open surgeries as the origi-
nal shadowless lamps are intended [25]. A follow-up work implements automatic
calibration and view-switching to reduce the burden for manual view alignment
and occlusion avoidance in the original work [11]. Contrary to this 2D approach,
we reconstruct 4D (i.e., spatiotemporal Gaussians) of open surgery and remove
occlusions from the representation.

3 project page: https://isogawa.ics.keio.ac.jp/projects/4DGS-McSL
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Fig. 1: Overview of our occlusion-free 4D Gaussian generation. Our major contribu-
tions lie in the two occlusion removal modules (a, b). The outcome is a 3D video
without occlusions (e.g., the head in this figure) and free viewpoint control.

2.2 3D View Synthesis in Medical Domain

3D reconstruction has been actively studied in endoscopic surgery due to the
ready-to-use video inputs [2,26]. Neural rendering [17] allowed researchers to
revisit novel view synthesis for improved visual fidelity [1]. More recent 3D
Gaussian representation [12] gained rapid attention due to its high-performance
rendering in this domain [29]. 4DGS [28] lifted up the application range to the
temporal domain [15].

Open surgery 3D video recording was more challenging than endoscopic
surgery due to the lack of stable multi-view video resources. With McSL, 3D
view synthesis became feasible but was limited to static scenes [20]. Similarly
to 4DGS in endoscopic surgery, we leverage 4DGS scene representation for open
surgery with McSL video resources but further address its unique challenge of
frequent occlusions by surgeons.

3 Method

The proposed method reconstructs surgical scenes in 3D over time and incorpo-
rates two different occlusion removal methods: one removes occlusions based on
masking (Section 3.2) and the other removes them at the 3D splat level (Sec-
tion 3.3). We discuss advantages and currently observed limitations, leading to
the evaluations on which to select and combine.

3.1 Overview

We record an open surgery as video X consisting of Nine frames from Neam (=5
by default) cameras in the McSL and generate a rendered video Y of Njy,e frames
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from a desired perspective. In summary, X = {Xf | ¢ € [1, Neam], t € [1, Nimg|}
and Y ={Y; | t € [1, Nimg|} (Fig. 1).

We approach the task of rendering Y by reconstructing the surgical scene
in 4D (xyz-t) space using Gaussian splatting representation and then synthe-
sizing the reconstruction result from the desired viewpoint. We reconstruct our
base 4D Gaussians using the state-of-the-art 4DGS approach [28]. 4DGS uses
a canonical 3DGS and displaces it for observed dynamics. The original 4DGS
approach uses structure-from-motion (SfM) points with SIFT features. Previous
works observed McSL calibration failing due to the lack of distinct features in
surgical fields and heavy occlusions [11,20]. Therefore, we use data-driven fea-
ture point detection and matching methods, SuperPoint [7] and Superglue [24],
respectively, following the best practice in the literature.

3.2 Occlusion Removal via Occlusion Masking

We remove occluding objects by excluding detected mask pixels from 4DGS
optimization, aiming to mask out the major disturbances such as the surgeon’s
head. We use Segment-Anything-2 (SAM2) [23] to segment regions to automate
the masking process for all multi-view video inputs. Since the segmented regions
do not have any labels, we identify the regions of occluding objects by quantifying
occlusion-specific characteristics based on four criteria:

e Sc evaluates how convex a segment is. Occlusions such as surgen’s head
appear mostly round or convex. To measure this, we calculate the intersection
over union (IoU) of a segment and its convex hull.

e Sg evaluates how much a segment touches the image edges. Our observation
is that occluders tend to obscure the edges of camera images since they
appear close to McSL. We then calculate Sg = min(1, legge/lcontour) is the
length of the occluder’s contour, and lcontour and leqge is the length of the
occluder’s contour that touches the image edges, respectively.

e 51 evaluates the darkness of a segment. Occlusions appear close to McSL
and thus darker than the other areas. We calculate the ratio of the average
intensity of a segment over that of the entire image.

e Sy is designed to evaluate (i) how close the color is to the target color and
(ii) how small the standard deviation of the occluder’s color is. This is based
on the observation that occluders are often surgen’s neck, or head wearing
surgical caps, which typically have a roughly known color in advance and
are often composed of a single color. Here, the Hue component in the HSV
color space is used for robustness, We calculate

S = max <0’ 1 Std(cseg)> (1 _ diff(ave(cseg) — Ctarg)) W

90 90

where cgeq and ciorg are a set of colors at each pixel in the segmented region
and the target color, respectively. std(-), ave(-), and diff(-) represent stan-
dard deviation, average, and difference function, respectively. There are two
differences in Hue values, we choose the smaller value in absolute differences.
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We calculate the final score, S, with a linear combination, zke{C,E,I,H} WSk
We identify an occluder segment where S exceeds a threshold (Fig. la). We
enlarge the regions to prevent noisy reconstruction around the silhouette.

3.3 Occlusion Removal via Distance Distribution Analysis

When a surgical field is occluded by surgeons, two clusters (i.e., surgical field
and occluder) of 3D Gaussians are expected to appear. Given Nia, cameras,
we approximate their locations by a plane and calculate distances to individual
Gaussians. These distance values typically exhibit single peaks in non-occluded
scenes and binomial peaks in occluded scenes (Fig. 1b).

We assign the distance values into bins and perform kernel density estimation
to approximate the distribution. We identify two distinct peaks that are suffi-
ciently separated. We then determine dy,order at the midpoint between the farther
peak and minimum density between the two peaks to remove all Gaussians that
fall below this distance.

4 Experiments

We validate our method via quantitative evaluation using our dataset of real
surgeries (Section 4.2) and expert review (Section 4.3).

Hardware. We used a machine with an Intel(R) Xeon(R) w5-3435X with 64
GB RAM running on Ubuntu 22.04 LTS OS, and NVIDIA RTX A6000 48 GB.
Parameters. w, = 0.250, wg = 0.500, w, = 0.125, and ws = 0.125, and the
threshold for classifying the calculated scores was set to 0.85 (Section 3.2).
Contendor. We compare our method with the state-of-the-art view-switching
method (Switch) [11]. While this approach finds non-occluded frames, we remove
objects using the masking and distance thresholding approach (Ours:Mask and
Ours:Dist, respectively) and distance thresholding (Ours:Mask+Dist).

4.1 Dataset Generation

To assess our method in various surgery types, we used seven surgical videos:
#1 polysyndactyly, #2 external nasal deformity, #3 intramuscular lipoma of
the gluteus maximus, #4 Frontal bone fracture, #5 preauricular sinus, #6 scalp
scar revision and hair transplantation, and #7 keloid on the anterior chest.

There are no pairs of videos with and without occlusions in the original
dataset [11], and no ground truth for our occlusion removal task is provided for
quantitative evaluations. Therefore, we generated (c) input videos with occlu-
sions (a) by extracting occluded areas in the same video and superimposing them
over (b) the ground truth video without occlusion, as in Fig. 2. We prepared 15
and ten videos (300 frames each) from #1 and #7, respectively. We chose these
two scenes because they recorded enough unoccluded videos, which are suitable
for ground truth and input compositions.
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Polysyndactyly Keloid on the Anterior Chest

Fig. 2: Creating input and ground truth pairs. We extract (a) occlusion regions and
overlay them to (b) frames without occlusions in the same scene to create (c)
virtual input frames. Therefore, (b) is the ground truth of (c).
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Fig. 3: Comparisons between Switch [11] and our method.
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4.2 Quantitative Evaluation

Evaluation Metrics. We used standard image metrics including PSNR, SSIM,
and LPIPS [30] and also a video metric, AvSpeed [8]. AvSpeed represents the
average motion speed of image feature points. A smaller value indicates that the
video is temporally smoother. Given the total number of image frames Ny and
the number of feature points per frame IV, AvSpeed is computed as

N, Nj—1

AvSpeed = Np(l Z Z |2 (1) (2)

zltl

Here, the velocity Z;(t) is defined as follows, where z;(t) denotes the position of
the i-th feature point in image coordinates:

Z,(t) = Zi(t =+ 1) — Zl(t) (3)

Results. Example results using each method with the composited videos are
shown in Fig. 3. Table 1 summarizes the average and standard deviations in
individual scores. To highlight the influence of the masking accuracy of Segment-
Anything-2 [23], our segment selection criteria, and supportiveness of Mask+Dist,
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Table 1: Quantitative evaluation of occluded scenes. The best and the second best
results are colored by orange and pink, respectively.
Method PSNR [dB] (1)  SSIM (1) L-PIPS (J) AvSpeed [px/frame] ({)

B Ours:NoOcc 31.7 (£2.8) 0.924 (+0.022) 0.160 (£0.072) 2.51 (£2.63)
£. switch[11]  16.0 (+4.3) 0.709 (+£0.091) 0.380 (+0.097) 3.64 (+£3.31)
S8 Ours:Mask | 227 (£3.1) 0.830 (0. 060) 0.273 (£0.087) 2.79 (£2. 67)
T A Ours:Dist 174 (£4.1) 0.763 (£0.078) 0.364 (£0.090)  2.94 (+2.30)
.2 Ours:Mask+Dist = 22.0 (£3.9) 0.818 (£0.070) 0.292 (£0.098) 2.53 (£2.47)
=
é;) Ours:NoOcc 32.0 (£3.3) 0.925 (£0.029) 0.196 (£0.064) 2.18 (£1.95)
Sac switch [11]  19.0 (£0.8) 0.807 (0.067) 0,288 (££0.051) 5.50 (£2.75)
% 2 Qurs:Mask  16.6 (£1.90) 0.811 (0. 052) 0.385 (£0.043)  3.24 (+1.52)
SV ours:Dist | 19.1 (£24) 0.823 (£0.057) 0.367 (+0.071 2.65 (£2.06)
Ours:Mask+Dist = 20.1 (£1.3) 0.824 (0.052) 0.339 (£0.035) 2.55 (£1.72)

we calculate individual scores depending on the success rates of the masking. The
success rate of mask generation was calculated based on the number of matching
pixels compared to the occlusion mask used for creating the composited video.
The average mask generation accuracy across all 25 scenes was 98%. Therefore,
we grouped 20 scenes with the accuracy > 98% and the rest with < 98%. We
performed 4DGS on the ground truth videos to confirm the possibly highest
performance (Ours:NoOcc).

Table 1 shows that our method outperforms the contender while it suffers
from inaccurate masks. We observed wrongly segmented head covers that un-
intentionally included neck and mask straps. In such cases, Mask+Dist supple-
mentary removes the frontal cluster of Gaussians, leading to higher performance.
The evaluation scores of Qurs:Dist are relatively low for > 98%. This is due to
the fact that Gaussians represent scenes using overlapping ellipsoids, which leads
to ambiguity in the boundaries between occluders and the background. Conse-
quently, combining both (Ours:Mask+Dist) can stably achieve good scores over
different conditions. Switch [11] can offer clear but distorted views due to plane
approximation of Homography warping from a far camera.

Ours performs better in the video metric, AvSpeed, than Switch regardless
the mask generation accuracy. Switch applied view switching that resulted in
different warping and skewing over time. The missing pixels around the warped
views also frequently changed. Overall, the quality of the output videos varied.

4.3 Expert Review

Participants. We collected five medical doctors (D1-D5, all male, age AVG=
42.5, SD= 11.0 years old, performing surgeries regularly) from a medical school.
Visual stimuli. We performed Switch [11], Ours:Mask, and Ours:Mask+Dist
for videos #1-#6 (Fig. 4). To display all videos per method within a screen, we
used the first six videos. We excluded Ours:Dist due to its low fidelity in the
quantitative evaluation. All videos have 300 frames (=10 s), and occlusions occur
at least once. Fig. 4 shows example frames. We generated videos with rotating
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Switch [11] Ours:Mask

Ours:Mask+Dist

Video #1

Video #2

Video #4  Video #3

Video #5

Video #6

Fig. 4: Videos for expert review.

cameras to show the motion parallax in our occlusion-free 4DGS. We provide
these videos as supplemental material.

Apparatus. We prepared a web page showing videos of three methods in a
randomized order. We showed six videos of each method at once per page. For
Ours, we presented videos with a rotating camera to show the motion parallax.
Task. The participants were asked to provide comments addressing the strengths
and weaknesses of individual methods after watching videos of each method.
Comments on Switch. The comment was positive, with consistent viewpoints
and minimal stress during view-switching (D2, D4, D5). The highest visibility
was acknowledged, enhancing the viewing experience (D1, D5). However, some
limitations were noted, including occasional visible blurs (D1), missing regions
all around the warped view (D4), temporary loss of points of interest (D3, D4),
and significant occlusion (when all cameras were blocked) (D2).

Comments on Ours. The free viewpoint changes were well-received (D2, D4).
D2 specifically noting its usefulness for viewing surgery from different angles.
The fewer occlusions than Switch were also appreciated (D3). However, some
concerns raised, including a lack of clear vision (D2, D3, D4, D5) and occasionally
missing surgical instruments (D1).

Ours:Mask+Dist was considered superior to Ours:Mask due to its cleaner
vision (D3, D4). However, some users could not discern a difference between the
two (D2, D5). D4 expressed a desire to control the viewpoint, and D5 highlighted
the high educational value of reproducing videos from the surgeon’s perspective.
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5 Conclusion

We proposed occlusion-free 4DGS using McSL to synthesize open surgery videos
without visual disturbance at arbitrary viewpoints. We evaluated our method
by comparing it with the state-of-the-art auto view-switching method. To this
end, we created a new dataset for this unique task. Further, we had an expert
review for explanatory investigation of limitations and future challenges.

We aim to improve the rendering fidelity further using prior knowledge,
such as hand and instrument models. We are also interested in providing our
occlusion-free 4DGS in VR headsets to investigate its educational value.

Ethical approval. Approval for open surgery video recording was obtained from the
ethics committee of Keio University under 20180111. Informed consent was obtained
from all individual participants included in the study.
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