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Abstract. Reliable polyp segmentation in colonoscopy videos is cru-
cial for early detection and prevention of colorectal cancer. While deep
learning-based segmentation models show promise, their performance
can be inconsistent, and robust methods for assessing segmentation qual-
ity without ground-truth annotations are lacking. This paper presents a
novel quality control framework for polyp segmentation that leverages
the temporal consistency inherent in colonoscopy videos. Our frame-
work utilizes the Segment Anything Model 2 (SAM2), a powerful video
segmentation foundation model, to propagate segmentation predictions
between adjacent frames. By evaluating the consistency between these
propagated segmentations and the original model predictions, we ob-
tain an unsupervised Segmentation Quality Assessment (SQA) score for
each frame. Furthermore, we introduce a re-segmentation module that
refines low-quality segmentations by leveraging information from high-
quality frames, identified based on their SQA scores. Experiments on
the SUN-SEG and PolypGen datasets demonstrate a moderate to strong
correlation between the SQA scores produced by our framework and
the ground-truth segmentation quality. The re-segmentation module also
improves overall segmentation performance without requiring model re-
training or fine-tuning. This work suggests a step towards building more
reliable and trustworthy Al-assisted colonoscopy systems. The code is
available at https://github.com/LYJ-NJUST/Seg-Quality-Control.
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1 Introduction

Colorectal cancer (CRC) ranks as the third most common malignancy and the
second leading cause of cancer-related deaths globally, posing a substantial threat
to public health [16]. Colorectal adenomatous polyps are recognized as the pri-
mary precursors to CRC. The timely identification and removal of these polyps
are crucial for reducing CRC incidence and improving patient survival rates [16].
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Colonoscopy remains the gold standard for polyp detection, but it is a resource-
intensive procedure traditionally requiring significant physician time and exper-
tise. Furthermore, the accuracy of colonoscopy can be highly dependent on the
operator’s skill and experience, with miss rates sometimes exceeding 20% [9, 8].

The advancements in deep learning have led to significant improvements
in medical image segmentation accuracy. Automated polyp segmentation holds
promise as a valuable tool to assist physicians, potentially reducing their work-
load and improving diagnostic consistency. However, existing polyp segmentation
models often exhibit unstable performance, demonstrating high accuracy on fa-
miliar datasets but significantly reduced performance on unseen samples from
diverse sources [3]. Even state-of-the-art polyp segmentation models (e.g., [18,
4,14,15]) can produce unreliable segmentations when presented with data vari-
ability. Crucially, these models typically lack mechanisms for self-assessment of
segmentation quality. They generate predictions without any accompanying mea-
sure of confidence or accuracy, hindering trust and adoption by clinicians and
patients. Therefore, a robust and reliable segmentation quality assessment sys-
tem is critical for the trustworthy deployment of medical Al systems in clinical
practice.

The Segment Anything Model 2 (SAM2) [13] is a powerful general-purpose
segmentation foundation model trained on a massive dataset of videos and masks
(50.9K videos and 35.5M masks). SAM2 demonstrates strong zero-shot general-
ization capabilities for object segmentation in both images and videos, across a
variety of downstream tasks. In this paper, we leverage SAM2’s video segmen-
tation capabilities and promptable interface to develop a novel quality control
framework for polyp segmentation in colonoscopy videos. This framework aims
to assess and potentially enhance the reliability of automated polyp segmenta-
tion without the need for ground-truth annotations. Our approach operates as
follows: given a polyp segmentation model’s output for a colonoscopy video, we
extract visual prompts from the predicted segmentation masks. These prompts
are then used with SAM2 to propagate the segmentation results to adjacent
frames. By measuring the spatiotemporal consistency (using the Dice coefficient)
between the original segmentation and the SAM2-propagated segmentations, we
obtain an indicator of the segmentation quality. Frames with high consistency
scores are considered more reliable. Furthermore, these high-quality segmenta-
tions can be used to refine potentially lower-quality segmentations through a
re-segmentation process. Our experiments on the SUN-SEG [10, 11] and Polyp-
Gen [2]| datasets demonstrate that the proposed framework’s quality assessment
scores exhibit a moderate to strong positive correlation with actual segmentation
quality (measured against ground truth). Moreover, the framework demonstrates
the capability to improve the overall segmentation quality without requiring any
model retraining or fine-tuning. This work makes the following key contributions:
(1) Unsupervised Quality Assessment: We introduce a novel framework for
assessing polyp segmentation quality in colonoscopy videos without relying on
ground-truth annotations. (2) Segmentation Enhancement: Our framework
can improve polyp segmentation quality without the need for additional train-
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Fig. 1. Method overview: the SQA module evaluates video segmentation quality, and
the Re-Seg module provides segmentation refinement.

ing or fine-tuning. (3) Synergistic Model Integration: We demonstrate the
effective combination of a specialized polyp segmentation model with a general-
purpose foundation model (SAM2). This approach is adaptable and can be ex-
tended to other medical video segmentation tasks and foundation models.

2 Methodology

The high-level motivation is to utilize the strong spatio-temporal mask propa-
gation capability of video segmentation models (e.g., SAM2) to assess temporal
segmentation consistency. This, in turn, helps evaluate segmentation quality and
enhance or correct low-quality segmentations using high-quality ones along the
temporal domain. Our proposed method, illustrated in Fig. 1, is designed to as-
sess and enhance the quality of polyp segmentation in colonoscopy videos with-
out relying on ground-truth annotations. The method operates in two primary
stages: Segmentation Quality Assessment (SQA) and Re-Segmentation (Re-Seg).

2.1 Segmentation Quality Assessment (SQA)

The SQA module leverages the temporal consistency inherent in colonoscopy
videos to evaluate the reliability of segmentation predictions. Given a colonoscopy
video, we first decompose it into a sequence of n frames, denoted as {x1,za, ..., 2, },
where each frame x; € RW*H*C represents a color image with width W, height
H, and C color channels (typically C' = 3 for RGB). An already trained polyp
segmentation model, denoted as fyode1, processes each frame x; to produce a cor-
responding binary segmentation mask y;: 1; = fuodel(7;), where y; € {0, 1}V *H,
Note that we represent the binary mask as a single-channel image for notational
simplicity, rather than the two-channel output mentioned in the original text.
The core of the SQA module lies in exploiting the video segmentation capa-
bilities of the Segment Anything Model 2 (SAM2), denoted as fsane. We utilize
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SAM2 to propagate segmentation information between adjacent frames, thereby
assessing the temporal consistency of the initial segmentation results.

More specifically, we operate on a window of frames centered around a given
frame ;. This window, with a radius of w, is defined as the set {z;_y, ..., Titw}-
For the central frame x;, we first generate a visual prompt p; from its predicted
mask y;. This prompt, created by an extractor P, is composed of the bounding
box coordinates and center points of the segmented object.

We use SAM2 to propagate a mask from a source frame x; to other frames x;
within a specified temporal window. This process generates a propagated mask,
m;—j, for each target frame x;. The propagation function is designed to process
the entire sequence of frames between the source and target, performing the
segmentation propagation or tracking:

mi*)j:fSAM2(mi,pi,{xi’-.-7xj})7 je{i—w,...,i—i—w}\{i}. (1)

In this formulation, fsane takes the initial prompt p; and the sequence of
frames from the source x; up to the target z; as input. The output, m;_;,
represents the propagated segmentation mask for frame z;, with pixel values
ranging from [0, 1].

We then measure how consistent the original segmentation, y,,, is with each
of the propagated masks, m,_,. We do this using the Dice similarity coefficient
(DSC), calculated as:

2|yu N mv—>u|
dv u = DSC wy My—u) = — 2
o = D8O o) = T ] )

Here, d,_,, represents the Dice similarity between the original segmentation
in frame u (y,) and the mask propagated from frame v to frame u (my,—,). A
higher DSC value means better overlap and consistency between the two masks.

Finally, we compute the SQA score, s,, for the segmentation y, of frame
2. This score is simply the average DSC across all masks propagated to that
specific frame:

1 u+w

Vv=u—wAVEU

The unsupervised SQA score, s,, provides an evaluation of the segmentation
mask’s quality (y,,) for frame x,. A higher s, score indicates greater spatiotem-
poral consistency with neighboring frames. This consistency acts as a stand-in
for higher segmentation quality, as a good segmentation should align well with
its surroundings over time.

2.2 Re-Segmentation (Re-Seg)

The Re-Seg module leverages the SQA scores to selectively refine segmentation
results. The process involves identifying low-quality frames and replacing their
initial segmentations with improved ones derived from higher-quality frames.
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First, we compute the average SQA score across all frames in the video:
5§ = % Z?:l s;- We then define the set of low-quality frames, L, as those frames
whose SQA scores fall below the average: L = {x; | s; < 5}. To identify reliable
high-quality frames, we introduce a stability criterion. For each frame z; not in L,
we calculate a self-consistency score d; ; by propagating the segmentation from x;
back to itself using SAM2: m;_,; = fsamz (i, pi, {x:}), and d; ; = DSC(y;, mi—i)-
Here, the self-consistency score measures how well SAM2 can reproduce the
initial segmentation y; when provided with its own prompt.

We define the set of high-quality frames, H, as those frames that are not
low-quality and whose self-consistency score exceeds a predefined threshold, ¢

The threshold ¢ € [0,1] is a hyperparameter controlling the stringency of the
high-quality frame selection.

For each low-quality frame x; € L, we identify the ¢ nearest high-quality
frames within the video sequence, denoted as {xp,, Th,, ..., Zn, }, where x5, € H
for all k. “Nearest” is defined in terms of the frame index difference, minimizing:

{h1,ha,...,h.} = argmin Z |l — k;|, subject to xx;, € H Vj. (5)
{k1 =1

We then propagate the segmentations from these ¢ high-quality frames to the
low-quality frame z; using SAM2:

Mhy—1 = fSAMQ(‘rhk7phk7{$hk7' .. ,fEl}), ke {1727‘ .. 70} . (6)

Finally, we combine these propagated masks to generate the refined segmentation
m, for the low-quality frame z;: m; = o (% p Oy mhk_,l), where o(z) = 1/(1 +
e~ ?) is the sigmoid function, applied element-wise. This averaging and sigmoid
application produces a final, refined mask m; € [0,1]">*# for the low-quality
frame. This refined mask m; then replaces the original segmentation y;.

3 Experiments and Results

For the primary experiments, we utilized a well-trained HSNet [18] (a lead-
ing polyp segmentation model, weights obtained from its official release) and
SAM2 [13] (a state-of-the-art image and video segmentation foundation model).
Two public colonoscopy datasets were used: PolypGen [1| and SUN-SEG |7, 12].
PolypGen, a multi-center dataset from Europe and Africa, contains 23 polyp-
positive videos (2225 total frames). SUN-SEG comprises 285 positive colonoscopy
videos (49136 total frames) with per-frame ground truth masks.

Within the SQA module, the temporal window radius is set to 10 by default,
encompassing 21 frames (the current frame, plus 10 preceding and 10 subsequent
frames). The stability threshold for high-quality sample re-segmentation is 0.85.
For SQA assessment, Spearman’s, Pearson’s, and Kendall’s correlation coeffi-
cients are used to measure the rank and linear correlations between predicted
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Table 1. Correlation between predicted SQA scores and true Dice, comparing our
method to other unsupervised approaches (higher is better).

PolypGen SUN-SEG

SQA Methods Pearson|Spearman|Kendall|Pearson|Spearman |Kendall
Softmax [6] 0.389 0.297 0.195 | 0.363 0.262 0.191
Dropout(p=0.3) [5] | 0.368 0.486 0.365 | 0.437 0.433 0.314
Dropout(p=0.5) 0.385 0.480 0.365 | 0.447 0.430 0.312
SPC(w=1) [19] | 0.040 | -0.00I |-0.005 | 0.279 | 0.178 | 0.127
SPC(w=5) 0.014 | -0.008 | -0.012 | 0.287 0.164 0.119
SPC(w=10) 0.011 | -0.017 | -0.020 | 0.289 0.159 0.116
SQA-SAM [20] 0.389 0.481 0.356 | 0.408 0.413 0.300
Proposed 0.649 0.514 | 0.384 | 0.662 0.524 | 0.387
Dropout-+Proposed | 0.636 0.519 0.387 | 0.660 0.532 0.393
SQA-SAM+Proposed| 0.648 0.525 0.393 | 0.655 0.526 0.388

SQA scores and ground truth DSC. Re-segmentation performance is evaluated
using the mean Dice coefficient (mDice) before and after the operation.

Table 2. The segmentation quality (mDice) with and without re-segmentation.

Seg. Model|Re-Seg|PolypGen SUN-SEG
HsNet | X 0.719 + 0.421 |0.791 + 0.315
© 7 0.734 T 0.419]0.804 + 0.264
X 0.723 + 0.418 |0.777 + 0.287
PolypPVT 0.727 + 0.418|0.786 + 0.279
X 0.705 + 0.426 |0.722 + 0.338
CFANet 7 0.749 + 0.427|0.751 + 0.315

3.1 Main Results

Quantitative and Qualitative Results of SQA. We quantitatively evalu-
ated HSNet’s segmentation quality on the PolypGen and SUN-SEG datasets
using the proposed framework. SQA scores, generated by our framework, were
compared against ground truth Dice similarity coefficients (DSC) via correlation
analysis. Table 1 compares our framework with established methods, including
Softmax entropy [6], Monte Carlo Dropout (various sampling probabilities) [5],
Spatial Consistency (SPC, various window sizes) [19], and SQA-SAM [20]. While
Softmax, Dropout, and SQA-SAM assess quality at the image level, SPC, like our
method, evaluates video-level segmentation quality. Our method demonstrates
better performance, achieving Pearson correlation coefficients > 0.6, Spearman
rank correlation coefficients > 0.5, and Kendall’s tau coefficients > 0.38 on both
datasets. These results indicate a statistically significant, moderate-to-strong
correlation between predicted SQA scores and ground truth DSC. Integrating
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Fig. 2. Visualization of how well the SQA scores (in Dice) from our method align with
the true Dice values obtained by comparing the segmentation to the ground truth.

Table 3. Performance of SQA for the proposed method using various options of video
segmentation foundation models (VSFMs).

VSFM PolypGen SUN-SEG
Pearson|Spearman |Kendall|Pearson|Spearman |Kendall
SAM2(large) | 0.649 0.514 0.384 | 0.662 0.524 0.387
SAM2(base+)| 0.651 0.520 0.388 | 0.665 0.529 0.388
SAMURAI | 0.646 0.497 0.370 | 0.627 0.500 0.366

Dropout or SQA-SAM with our method further improved segmentation quality
assessment (SQA) performance in certain cases.

Fig. 2 visualizes the relationship between predicted SQA scores and ground
truth DSC for representative video sequences. The observed trends and consis-
tent relative magnitudes of SQA scores and DSC corroborate the strong correl-
ative relationship. Notably, SQA scores exhibit a smoother response to abrupt
DSC fluctuations, suggesting a potential area for future SQA refinement: cap-
turing rapid temporal changes in segmentation quality.

On Improving Segmentation Performance. To quantify the impact of re-
segmentation, we evaluated the initial segmentation performance of HSNet [18§],
PolypPVT [4], and CFANet [21] on PolypGen and SUN-SEG. Initial perfor-
mance was measured using the mean Dice similarity coefficient (mDSC) between
model predictions and ground truth. Subsequently, we applied our framework,
encompassing SQA and re-segmentation. Table 2 presents a comparison of seg-
mentation quality before and after applying the re-segmentation module. This
evaluation considers only frames that contain polyps in the ground-truth anno-
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Fig. 3. Ablation studies of temporal window radius w (a) and stability threshold ¢ (b).

tations. The results demonstrate consistent improvements in mDSC across all
three SOTA polyp segmentation models, underscoring the effectiveness of the
re-segmentation strategy.

On Improving Detection Performance. On the PolypGen dataset, HSNet
initially generated 2,778 polyp detection instances. Among these, 1,257 instances
(45.2%) were false positives (FPs), primarily due to the presence of 515 negative
frames in the dataset. Additionally, 468 instances (16.8%) were false negatives
(FNs). Our re-segmentation module effectively corrected 190 FPs (17.8%) and
70 FNs (17.6%), reducing the FP and FN rates to 40.5% and 15.1%, respectively.
On the SUN-SEG dataset, HSNet produced 10,616 FPs (18.8%) and 4,652 FNs
(8.2%). Through re-segmentation, 1,368 FPs (14.8%) and 534 FNs (13.0%) were
corrected, resulting in reduced FP and FN rates of 16.6% and 7.4%, respectively.

3.2 Ablation and Additional Studies

We conduct ablation studies to investigate key hyperparameter influence and
framework adaptability. Specifically, we examine the effects of the temporal
window radius (w) in the SQA module and the stability threshold (¢) in the
re-segmentation module, and evaluate the framework’s robustness to variations
in the underlying foundation segmentation model.

Impact of Temporal Window Radius (w). Fig 3 (a) shows the effect of
varying w on SQA module performance. A larger w expands the receptive field,
enabling the model to incorporate broader temporal context, generally lead-
ing to a more accurate quality assessment. Setting w = 0, effectively disabling
the temporal component, significantly degrades performance, underscoring spa-
tiotemporal information’s crucial role in video segmentation quality assessment.
Impact of Stability Threshold (t). Fig. 3 (b) shows the impact of the stability
threshold, ¢, within the re-segmentation module. A non-zero threshold (¢ > 0)
generally leads to better performance than no threshold (¢ = 0).

‘Working with Different Segmentation Foundation Models. To assess the
framework’s flexibility, we replaced the default SAM2 (large) foundation model
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with SAM2 (base+) and SAMURATI [17], while keeping all other settings un-
changed. Table 3 presents the SQA module performance with these different
foundation models. The consistent performance across these variations demon-
strates the robustness and adaptability of our framework to different underlying
segmentation models. This indicates that our approach is not tightly coupled
to any specific foundation model and can be easily adapted to incorporate ad-
vancements in foundational segmentation techniques.

4 Conclusion

We developed a novel, unsupervised framework for assessing and enhancing the
quality of polyp segmentation in colonoscopy videos. By leveraging a video seg-
mentation foundation model, we proposed an innovative quality control and
performance enhancement approach that does not require ground-truth anno-
tations or model retraining. Our results demonstrate a valuable correlation be-
tween the quality assessment scores and actual segmentation quality, with the re-
segmentation step further improving performance based on the SQA scores. The
synergy between specialized polyp segmentation models and general-purpose
foundation models like SAM2 opens new avenues for scalable, robust, and adapt-
able solutions in medical video analysis.
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