
CLIP-DSA: Textual Knowledge-Guided
Cerebrovascular Diseases Recognition in

Multi-View Digital Subtraction Angiography

Qihang Xie1, Dan Zhang2,�, Mengting Liu3, Jianwei Zhang4, Ruisheng Su5,
Caifeng Shan6, and Jiong Zhang1,�

1 Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of
Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China

danzhang@nbut.edu.cn;jiong.zhang@ieee.org
2 School of Cyber Science and Engineering, Ningbo University of Technology,

Ningbo, China
3 Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
4 USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine,

University of Southern California, Los Angeles, CA 90033, USA
5 Department of Biomedical Engineering, Eindhoven University of Technology,

Eindhoven, Netherlands.
6 School of Intelligence Science and Technology, Nanjing University, Nanjing, China

Abstract. Digital Subtraction Angiography (DSA) sequences are the
gold standard for diagnosing most Cerebrovascular diseases (CVDs).
Rapid and accurate recognition of CVDs in DSA sequences helps clin-
icians make the right decisions, which is important in clinical practice.
However, the pathological characteristics of CVDs are numerous and
complex, and the spatiotemporal complexity of DSA sequences is high,
making the diagnosis of CVDs challenging. Therefore, in this paper,
we propose a novel CVDs classification framework CLIP-DSA based
on CLIP, a pre-trained vision language model. We aim to utilize tex-
tual knowledge to guide the robust classification of common CVDs in
multi-view DSA sequences. Specifically, our CLIP-DSA comprises a dual-
branch vision encoder and a text encoder. The vision encoder is used to
extract features from multi-view sequences, while the text encoder is used
to obtain textual knowledge. To optimally harness the temporal infor-
mation in DSA sequences, we introduce a temporal pooling module that
dynamically compresses image features in the time dimension. Addition-
ally, we design a multi-view contrastive loss to enhance the network’s
image-text representation ability by constraining the image features be-
tween two views. In a large dataset with 2,026 patients, the proposed
CLIP-DSA achieved an AUC of 90.8% in the CVDs classification. The
code is available at this website 1.

Keywords: Vision Language Model, Digital Subtraction Angiography, Cere-
brovascular Diseases, Image-Text

1 https://github.com/jiongzhang-john/CLIP-DSA

https://github.com/jiongzhang-john/CLIP-DSA
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Fig. 1. Schematic diagram of several CVDs, including paired anterior-posterior (AP)
and lateral (LA) views. Control: normal/healthy, MMD: Moyamoya disease, IA: in-
tracranial aneurysm, AM: arteriovenous malformation, AS: arterial stenosis.

1 Introduction

Cerebrovascular diseases (CVDs) are among the leading causes of mortality and
disability worldwide, imposing significant physical and psychological suffering
on patients [1]. These conditions mainly result from abnormalities in cerebrovas-
cular structures. For instance, Moyamoya disease (MMD) is characterized by
the appearance of smoke-like vessels at the end of the internal carotid artery,
whereas abnormal cerebral artery dilation can lead to aneurysms, as illustrated
in Fig. 1. DSA captures a sequence of 2D images over time, depicting the entire
angiographic process from arterial to venous phases in both anterior-posterior
(AP) and lateral (LA) views. Due to its high spatial and temporal resolution,
DSA is considered the gold standard for diagnosing most CVDs [2]. However, the
interpretation of DSA heavily relies on visual examination by radiologists, and
each patient generates a substantial volume of data, making the process time-
consuming and labor-intensive. This complexity increases the risk of missed or
incorrect diagnoses, especially for radiologists with limited experience. There-
fore, the prompt diagnosis of CVDs is key to faster and more effective treatment
to reduce morbidity and mortality [3]. Developing automated methods for this
task can enhance diagnostic efficiency and support clinicians in decision-making
and treatment planning.

The rapid developments in deep learning have inspired several studies focused
on the segmentation and classification of CVDs in DSA sequences. Xie et al. [4]
and Su et al. [5] extracted cerebrovascular structures from DSA sequences using
spatiotemporal information. Lei et al. [6] proposed a multi-view convolutional
neural network (CNN) based on ResNet [7] by combining the AP and LA views
to identify the MMD and its hemorrhagic risk. Xu et al. [8] introduced a pseudo-
3D ResNet to process spatial and temporal information to assess the condition
of MMD, including mild, moderate, and severe stages. Similarly, Hu et al. [9]
utilized 2D CNN, 3D CNN, and BiConvGRU to learn spatiotemporal features
of DSA for MMD detection. Mittmann et al. [10] presented a new deep learning-
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based approach to classify thrombus of DSA sequences of patients with acute
ischemic stroke. Additionally, some researchers have used deep learning to detect
aneurysms [11] and intracranial vessel perforations [12] in DSA sequences. How-
ever, these methods can only identify a single disease, while common CVDs have
diverse and complex pathological characteristics, leading to insufficient general-
ization ability for the model. Additionally, the high spatiotemporal complexity of
DSA sequences contains a large amount of redundant information, which likely
reduces the accuracy of disease recognition.

To address these challenges, we propose to leverage textual knowledge to en-
hance CVDs recognition. The Contrastive Language-Image Pre-Training (CLIP)
model [13] has recently gained attention for its generalization in feature extrac-
tion across diverse data types. CLIP-based models have also shown promise in
addressing clinical challenges, such as leveraging paired image-text reports to
enhance domain-specific knowledge [14]. In this work, we propose CLIP-DSA, a
novel framework for recognizing CVDs in multi-view DSA sequences by leverag-
ing CLIP’s robust feature learning capabilities. The main contributions are:

(a) We propose a novel framework CLIP-DSA that leverages textual knowledge
to guide the robust classification of common CVDs in multi-view DSA se-
quences. To our knowledge, CLIP-DSA is the first network to utilize textual
information from CLIP for DSA-based CVDs recognition.

(b) We introduce a Temporal Pooling Module (TPM), which dynamically com-
presses image features in time dimension to better integrate the temporal
correlations among sequential frames in DSA sequences.

(c) We refine pre-training with contrastive learning at both single- and multi-
view levels and introduce a multi-view contrastive loss to improve image-text
representation by aligning features across views.

2 Method

2.1 Overall architecture

The proposed CLIP-DSA is trained under the CLIP paradigm, using our con-
structed multi-view image-text triplets. As shown in Fig. 2, it features a dual-
branch CLIP vision encoder to extract image features from multi-view DSA
sequences and a frozen CLIP text encoder to capture textual knowledge. Fol-
lowing the vision encoder, we introduce a temporal pooling module to compress
single-view features along the time dimension dynamically. These features are
then integrated to form a multi-view artery-level representation, aligned with
clinical practice. Each of the three feature types (two single-view and one multi-
view) is transformed via linear layers to match the dimensionality of textual
knowledge. Finally, similarity scores are computed between each feature and
textual knowledge, with a multi-view contrastive loss further constraining the
single-view features.

Given an input pair of multi-view DSA sequences Sap and Sla ∈ Rb×c×t×h×w,
and their corresponding text embedding T ∈ Rb×l, a multi-view images-text
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Fig. 2. Overview of the proposed method. Lmc denotes the multi-view contrastive loss.

triplet D = {Sap, Sla, T} is constructed. Where b, c, t, h, and w represent the
batch sizes, the number of channels, the number of frames, the height, and the
width of S, and l is the length of text, respectively. The vision encoder takes
Sap and Sla as input, while the text encoder is fed with T . Vision encoder:
The process of sequence encoding has been optimized for training convenience
by merging b and t into N , where N = b× t. Sap and Sla were encoded using a
ResNet50-based encoder Φv(·) respectively:

Sap = Φv(S
ap) ∈ RN×d,Sla = Φv(S

la) ∈ RN×d, (1)

where Sap and Sla ∈ RN×d denote the features of the two single-view sequences,
and d represents the embedding dimension. Text encoder: The CLIP text
encoder Φt(·) with frozen parameters is implemented to encode the given text
embedding T to get the textual knowledge. The complete encoding process can
be illustrated as follows:

T = Φt(T ) ∈ Rb×d, (2)

where T ∈ Rb×d represents the textual knowledge.

2.2 Temporal pooling module

It is important to utilize the information on dynamic contrast flow in sequential
frames to assist CVDs recognition in clinical practice. Furthermore, the image
feature Sap and Sla ∈ RN×d obtained from the vision encoder cannot be di-
rectly calculated similarity with the text feature T ∈ Rb×d extracted from text
encoder, necessitating compress in time dimension. Therefore, we designed the
Temporal Pooling Module (TPM) to better integrate the temporal correlations
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among sequential frames in DSA sequences. The TPM can dynamically adjust
the weight of feature Sap and Sla in the time dimension. The structure of TPM
is shown in the yellow box of Fig. 2. Specifically, Sap ∈ RN×d is firstly trans-
posed dimension to Rb×t×d. Subsequently, Sap undergoes average pooling to
obtain Sap

avg ∈ Rb×d, which is then subjected to a linear layer to produce fap
q .

Meanwhile, Sap is passed through two different linear layers to produce fap
v and

fap
k , respectively. After that, a dynamic weighted feature is obtained through an
attention-based mechanism using fap

q , fap
k , fap

v , which is finally added with the

average-pooled feature Sap
avg to produce the final enhanced feature Sap

en ∈ Rb×d.
The complete computational process can be illustrated as follows:

Sap
avg = AvgPool(Sap), (3)

fap
q = W(Sap

avg), f
ap
k = W(Sap), fap

v = W(Sap), (4)

Sap
en = Softmax(

fap
q × fap

k
T

√
d

)fap
v + Sap

avg, (5)

where W represents linear layer. Similarly, Sla is enhanced through the TPM to
get the feature Sla

en ∈ Rb×d.

2.3 Multi-view contrastive loss

After processing through the TPM, the single-view features Sap
en and Sla

en are
concatenated to form the multi-view feature Smv

en . These three features are then
linearly mapped to obtain features Vap, V la, and Vmv, which are in the same
dimension as the textual knowledge T . Therefore, the input multi-view image-
text triplet D yields features set F = {Vap,V la,Vmv, T }, which is then divided
into three subsets: Fap = {Vap, T }, F la = {V la, T }, Fmv = {Vmv, T } ∈ Rb×d,
corresponding to AP view, LA view, and multi-view level, respectively. In each
subset, the paired image and text features are considered positive samples for
each other, while the rest are negative samples. The cosine similarity matrix is
calculated for each subset. For the AP view subset, we measure the similarity
inter-samples using Eq. (6) following CLIP [13], termed as SIMap

v2t and SIMap
t2v ∈

Rb×b, where ϵ is a learnable parameter. Note that the learnable parameter ϵ
differs across the various loss functions.

SIMap
v2t =

Vap × T T

ϵ
, SIMap

t2v = SIMap
v2t

T
, (6)

then we calculate the contrastive loss Lap of the AP view subset, and Lap can
be defined as:

Lap =
CE(SIMap

v2t, Y ) + CE(SIMap
v2t, Y )

2
, (7)

where CE and Y ∈ Rb×b represent the cross entropy loss and the one-hot labels.
Similarly, we can calculate Lla and Lmv for LA view and multi-view according
to Eq. (6) and (7).



6 Xie et al.

Additionally, we expect that the AP and LA views, as different perspectives
of the same angiography, should exhibit a high degree of similarity. To this end,
we utilize a multi-view contrastive loss to constrain the image features from these
two views, thereby enhancing the image-text representation capability of CLIP-
DSA. The multi-view contrastive loss Lmc can be also calculated by Eq. (6)
and (7). Therefore, the overall loss is formulated as follows:

Ltotal =
Lap + Lla + Lmv + Lmc

4
(8)

3 Experiments

3.1 Dataset and implementation details

The dataset used in this study was collected from *** hospital, comprising 2,897
arteries with paired DSA sequences from 2,026 patients, totaling 5,794 sequences.
Based on clinical reports, arteries were labeled as Control (846), MMD (773),
IA (320), AM (411), and AS (547). The dataset was split into training (2,320
arteries: Control 678, MMD 619, IA 256, AM 329, AS 438) and test (577 ar-
teries) sets at an approximate 4:1 ratio, with the training set further divided
into training and validation subsets using the same ratio. All DSA sequences
were obtained from ethically approved studies with written informed consent,
following the Declaration of Helsinki. The text data consists of sentences formed
by disease labels, as shown in Fig. 2. Our method was implemented in PyTorch
using NVIDIA GeForce RTX 4090 GPUs. Model training employed AdamW [15]
with a weight decay of 1e-5 for 200 epochs. A polynomial decay strategy adjusted
the learning rate from 1e-4 to 1e-6. The batch size was set to 16, images were
resized to 224×224 pixels, and 16 frames were resampled per sequence. Common
data augmentation techniques, including horizontal and vertical flipping, were
applied. CLIP [13] and our CLIP-DSA used a pre-trained ResNet50 [7] as the
vision encoder, while the text encoder was a pre-trained Transformer.

3.2 Comparison with state-of-the-art methods

To assess the performance of the proposed CLIP-DSA, we compared it with
several various state-of-the-art methods, including 2D methods (ResNet50 [7],
Swin s [16]), Recurrent Neural Network (RNN) (Mittmann et al. [10], Hu et
al. [9]), 3D methods (R3D [17], S3D [18], MViT s [19], Swin3D s [20]) and vision-
language models (VLM) (HowTo100M [21], CLIP [13]). Pre-trained weights were
loaded if available for the compared methods. Additionally, to ensure the fairness
of the comparative experiments, these methods also incorporated a dual-branch
image encoder with shared weights, along with three classification heads corre-
sponding to the AP view, LA view, and multi-view, similar to CLIP-DSA. We
used the accuracy (ACC), F1 score (F1), and area under the ROC curve (AUC)
to evaluate the classification performance. Note that in Table 1 and Table 2, the
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Table 1. Performance comparisons for cerebrovascular disease recognition.

Methods
ACC(%) F1(%) AUC(%)

AP LA MV AP LA MV AP LA MV

2
D ResNet50 [7] 78.0 79.7 82.3 75.4 78.2 80.7 85.2 87.3 88.0

Swin s [16] 75.7 77.3 82.0 73.3 76.0 79.6 83.7 85.8 87.2
R
N
N Mittmann et al. [10] 77.4 79.7 82.0 75.2 77.7 79.4 85.8 86.4 87.6

Hu et al. [9] 54.8 50.8 56.0 49.1 47.6 53.2 69.7 67.6 72.2

3
D

R3D [17] 77.3 78.3 80.4 75.8 76.7 78.7 85.7 85.5 86.7
S3D [18] 74.0 77.1 79.4 71.4 75.0 77.9 82.9 85.5 87.3

MViT s [19] 73.0 73.0 77.3 71.0 71.1 76.0 83.3 83.4 85.8
Swin3D s [20] 75.0 77.3 80.4 72.4 74.1 78.5 83.5 84.5 87.1

V
L
M

HowTo100M [21] 66.9 70.9 72.4 64.9 70.4 71.9 80.5 83.0 85.1
CLIP [13] 75.9 78.7 81.3 74.0 76.5 79.3 84.0 85.3 87.1

CLIP-DSA - - 84.1 - - 83.3 - - 90.8

Fig. 3. The confusion matrices of CLIP and CLIP-DSA for recognizing cerebrovascular
diseases from multi-view DSA sequences.
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Fig. 4. The GradCAM diagrams of CLIP and CLIP-DSA, including MMD, AM, IA,
and AS. The number represents the frame index, as the most decisive frame varies
across different methods.

AP and LA columns indicate that the network uses only single-view sequences
as input, while MV represents the use of multi-view sequences.

The comparison results are presented in Table 1. From the quantitative anal-
ysis, it is evident that the proposed CLIP-DSA outperforms other methods. Since
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Table 2. Ablation results of our CLIP-DSA for cerebrovascular disease recognition.

Components ACC(%) F1(%) AUC(%)

Pooling Module Lmc AP LA MV AP LA MV AP LA MV

avg pool 75.9 78.7 81.3 74.0 76.5 79.3 84.0 85.3 87.1
✓ 77.1 78.7 82.0 75.2 77.0 80.0 85.1 86.3 87.8

avg-pool ✓ - - 83.5 - - 82.3 - - 89.4
max-pool ✓ - - 81.7 - - 80.5 - - 88.8
lstm ✓ - - 81.3 - - 80.4 - - 89.1
gru ✓ - - 79.4 - - 78.0 - - 86.9
✓ ✓ - - 84.1 - - 83.3 - - 90.8

the multi-view contrastive loss requires constraining features from both the AP
and LA views, metrics cannot be calculated for a single view independently.
However, our method achieves the highest performance in terms of ACC, F1
score, and AUC at the multi-view level. Specifically, CLIP-DSA improves upon
ResNet50 by 1.8%, 2.6%, and 2.8% in ACC, F1, and AUC, respectively; sur-
passes Swin3D s by 3.7%, 4.8%, and 3.7%; and exceeds the CLIP backbone
by 2.8%, 4.0%, and 3.7%, demonstrating its effectiveness and superiority with
statistical significance (p<0.05). Table 1 shows that multi-view recognition for
cerebrovascular disease outperforms single-view approaches. Interestingly, 2D
methods outperform RNN and 3D methods, likely because lesions are typically
visible only in a few middle frames, and improper handling of temporal data can
negatively impact performance. Additionally, a normalized confusion matrix of
CLIP and our CLIP-DSA on the test set is shown in Fig. 3. This indicates that
our CLIP-DSA achieves higher accuracy in recognizing MMD, IA, AM, and AS.
Compared to CLIP, our method demonstrates a stronger capability for image-
text representation. To further compare the two models, we used Grad-CAM[22]
to generate class activation maps for CLIP-DSA and CLIP. It can be seen that
CLIP-DSA focuses more on the lesion area compared to CLIP, as shown in Fig. 4.

3.3 Ablation study

To investigate the effectiveness of each component in the proposed CLIP-DSA,
we conducted the ablation studies in Table 2. We employed the CLIP as the
backbone, systematically reintegrating each component to conduct comprehen-
sive ablation studies. The 3rd row of Table 2 is the backbone CLIP, while 4th
and 5th row represent adding TPM and Lmc, respectively. They all contribute
to the improvement of the CVDs recognition effect. Notably, adding the Lmc has
the most significant improvement, i.e., 2.2% in ACC, 3.0% in F1 score, and 2.3%
in AUC. This suggests that the features of the AP and LA views hold highly
similar information and constraining image features of the two views can further
enhance the network’s image-text representation capability. Additionally, to fur-
ther validate the effectiveness of TPM, we replaced it with max pooling, LSTM,
and GRU, as shown in rows 6 to 8 of Table 2. Overall, CLIP-DSA achieves
superior performance by combining the proposed components.
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4 Conclusion

In this paper, we have proposed a novel framework, CLIP-DSA, the first network
that leverages textual information from CLIP for CVD recognition in multi-view
DSA sequences. It incorporates a temporal pooling module and a multi-view
contrastive loss to enhance the network’s image-text representation, improving
CVD recognition accuracy. Extensive experiments validate the effectiveness of
our approach, highlighting its potential for clinical application.
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