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Abstract. Accurate segmentation of vascular networks from sparse CT
scan slices remains a significant challenge in medical imaging, particu-
larly due to the thin, branching nature of vessels and the inherent spar-
sity between imaging planes. Existing deep learning approaches, based
on binary voxel classification, often struggle with structural continuity
and geometric fidelity. To address this challenge, we present VesselSDF',
a novel framework that leverages signed distance fields (SDFs) for robust
vessel reconstruction. Our method reformulates vessel segmentation as
a continuous SDF regression problem, where each point in the volume
is represented by its signed distance to the nearest vessel surface. This
continuous representation inherently captures the smooth, tubular ge-
ometry of blood vessels and their branching patterns. We obtain accu-
rate vessel reconstructions while eliminating common SDF artifacts such
as floating segments thanks to our adaptive Gaussian regularizer which
ensures smoothness in regions far from vessel surfaces while producing
precise geometry near the surface boundaries. Our experimental results
demonstrate that VesselSDF' significantly outperforms existing methods
and preserves vessel geometry and connectivity, enabling more reliable
vascular analysis in clinical settings.

Keywords: Vasculature - 3D Reconstruction - SDFs

1 Introduction

Accurate reconstruction of vascular networks from medical imaging data remains
a fundamental challenge in clinical diagnostics and surgical planning. Blood ves-
sels, with their intricate branching patterns and varying diameters, play a crucial
role in numerous pathologies, from coronary artery disease to tumor vasculature
assessment [23]. However, their thin, tree-like structures present unique chal-
lenges for reconstruction, particularly when working with sparse CT scan slices.
The clinical implications are significant — precise vessel reconstruction enables
better surgical navigation, improves understanding of blood flow dynamics, and
aids in early detection of vascular abnormalities [20].

Traditional segmentation and reconstruction approaches and recent deep
learning methods often struggle with the inherent sparsity between imaging
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planes, leading to discontinuities and loss of critical geometric features [26].
While deep learning has shown promise in medical image segmentation [15],
current approaches face two critical challenges: (i) maintaining structural coher-
ence and (ii) generalizing beyond the training data. The first challenge mani-
fests in regions where vessels branch or significantly change direction between
consecutive slices, often resulting in fragmented or anatomically implausible re-
constructions [28]. The second challenge stems from the inherent scarcity of
medical imaging datasets, especially those with annotated thin structures, lead-
ing to models that memorize specific vessel configurations rather than learning
generalizable geometric principles [14].

Signed distance field (SDF) based representations offer a promising solution
to these challenges due to their inherent ability to represent smooth, continuous
surfaces. By encoding geometry through distance fields, SDFs naturally capture
thin structures and maintain consistent spatial relationships [1]. Inspired by this,
we present VesselSDF', a novel approach that leverages these geometric princi-
ples while addressing common SDF-based reconstruction artifacts. Our approach
combines a specialized two-stage neural SDF encoder-decoder architecture with
a novel Gaussian regularization technique that eliminates floating artifacts by
adaptively enforcing smoothness based on distance from the vessel surface. To
address the generalization challenge, we reformulate vessel reconstruction as con-
tinuous geometric regression rather than discrete voxel classification, allowing the
model to learn underlying shape principles that transfer across different vessel
configurations and anatomical variations. Our distance-weighted regularization
further enhances generalization by encoding universal geometric priors related to
vessel continuity rather than memorizing specific patterns. This is complemented
by an efficient SDF refinement strategy that ensures robust reconstruction even
in challenging cases with significant inter-slice gaps.

In this work, we make the following contributions: (i) We introduce Ves-
selSDF', a novel neural SDF architecture for vessel segmentation and recon-
struction that enables accurate reconstruction of thin vascular structures from
sparse CT slices. (ii) We propose an adaptive Gaussian regularization technique
for SDF' learning that applies distance-weighted smoothness constraints, effec-
tively reducing floating geometric artifacts while preserving fine vessel details.
(iii) We demonstrate superior reconstruction performance on challenging clinical
vessel data containing thin vessels and complex branching patterns.

2 Related Work

Vasculature Segmentation. Deep learning approaches have largely super-
seded traditional methods in medical image segmentation. The foundational
U-Net [15] architecture established key principles through its encoder-decoder
structure with skip connections. However, vessel segmentation remains challeng-
ing due to the presence of thin branching structures and high inter-subject vari-
ation [22]. The segmentation of fine vascular structures presents unique difficul-
ties, as minor vessels are frequently undetected or fragmented in standard frame-
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works. This challenge stems from their limited spatial extent and complex topol-
ogy, creating a fundamental tension between preserving connectivity and main-
taining accurate boundaries [6]. Recent innovations have tackled this problem
through specialized architectures and loss formulations, such as topology-aware
loss functions to penalize disconnected vessels [18,17]. Concurrently, architec-
tures have evolved to better capture multi-scale vessel features, with transformer-
based models [27, 16] leveraging self-attention mechanisms to model global vessel
connectivity while preserving convolutional inductive bias [4]. Hybrid approaches
that integrate convolution with attention pathways have proven particularly ef-
fective for delineating tortuous vessels [10]. Structure-aware networks explicitly
incorporate vascular morphology through vessel-growing decoders in multi-task
frameworks [23]. Implicit neural representations have also been utilized [1] to pro-
duce continuous, topologically consistent vessel surfaces, and domain-adaptive
models have been shown to generalize across imaging modalities [22]. These de-
velopments demonstrate a shift toward specialized techniques that address the
fundamental challenges of thin structure segmentation.

Sparse Slice Segmentation. A significant challenge in medical image segmen-
tation is handling sparse slice data, which occurs due to radiation dose reduction
in CT or time constraints in MRI [25]. This limited through-plane resolution
creates discontinuities in vessel connectivity, particularly at bifurcations or di-
rectional changes [24]. While deep learning approaches have shown promise in
general medical segmentation, accurately reconstructing continuous vessel struc-
tures under sparse sampling remains difficult, especially with complex vascular
topologies. Recent approaches have explored 3D shape constraints [1,20], but
the problem persists for fine vessel structures.

Geometric Priors and Consistency. Recent efforts have integrated anatom-
ical knowledge and geometric constraints to improve segmentation accuracy,
especially when data are sparse or noisy. Topology-preserving approaches ex-
plicitly penalize disconnected or anatomically implausible predictions [18], im-
proving continuity in thin vascular segments [18]. For instance, by incorporating
synthetic angiogram training data and cross-hair filters to better handle ves-
sel continuity in large volumetric scans [20]. Beyond segmentation, advances in
neural rendering have shown strong potential for capturing thin vessel structures
through continuous SDFs [3,11,21] and neural radiance fields [12]. In contrast,
our VesselSDF approach poses vessel segmentation as a continuous SDF regres-
sion problem with an adaptive Gaussian regularizer, which simultaneously pre-
serves fine vessel geometry near surface boundaries while ensuring smoothness
in distant regions, eliminating floating geometric artifacts.

3 Method

3.1 Problem Statement

Traditional binary vessel segmentation approaches face three critical limitations.
First, the discrete nature of voxel-based representations results in jagged surface
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Fig. 1. Overview of VesselSDF, our two-stage approach for vessel segmentation
and reconstruction from CT scans. In the first stage, a 3D U-Net predicts a binary
occupancy map. The second stage refines this occupancy into a signed distance field
(SDF) using an additional 3D U-Net, guided by geometric regularization terms. The
output 3D SDF, converted into a mesh, contains high-quality reconstructed vessels.

artifacts, which are particularly pronounced in thin vessels where the surface-to-
volume ratio is high. Second, the substantial difference between in-plane resolu-
tion Az, Ay and slice thickness Az creates anisotropic distortions that fragment
vessel structures, especially at branching points. Third, while signed distance
fields (SDFs) offer a promising direction for continuous surface representation,
existing SDF-based methods often generate floating artifacts, i.e., disconnected
surface fragments that degrade reconstruction quality.

We address these challenges via VesselSDF, a two-stage framework that ex-
plicitly separates vessel segmentation from geometric reconstruction (see Fig. 1
for an overview). VesselSDF takes a volumetric CT scan V € RPXHXW ag input,
where D is the number of axial slices, and (H, W) are the in-plane dimensions. As
output, it produces a continuous signed distance field (SDF) fspr(x;6,), where
x is a 3D spatial coordinate and 6, are the model parameters, which implicitly
defines the vessel surface through its zero-level set:

S = {X S RB | fSDF(X;Qr) = 0} (1)

3.2 Binary Occupancy (Stage 1)

The first stage of VesselSDF focuses on binary vessel segmentation via an oc-
cupancy prediction function f,(x;80,). By focusing initially on the segmentation
task, we establish a reliable starting point for subsequent geometric refinement.
This occupancy predictor is implemented via a 3D encoder—decoder CNN-based
U-Net architecture that captures multi-scale vessel features and outputs a vox-
elwise vessel occupancy probability.

Accurate segmentation of thin, branching vessels requires multi-scale feature
representation. To achieve this, we integrate 3D attention gates [13]| such that at
each level £ of the encoder—decoder structure, we combine gating feature maps gy
with skip-connection feature maps hy through a learned attention mechanism:

ap = %/J(Wg g + Wy he>, (2)
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where t(-) is a learned attention function that highlights salient vessel features,
and W, and W}, are trainable weight matrices. The resulting attention weights
ay modulate the skip-connection features, ensuring focus on critical vessel re-
gions and preserving fine vascular details that might otherwise be overlooked.

3.3 SDF Refinement (Stage 2)

The second stage transforms the binary occupancy into a correctly scaled SDF:

fSDF(X;er) = fr(detaCh(fo(x§ 00)); 9r)7 (3)

where f,.(+;6,) is our SDF refiner network. The network regresses the signed dis-
tance to the surface. The gradient detachment ensures that SDF-specific distance
constraints do not interfere with the initial segmentation task. This refinement
is key to achieving smooth, accurate vessel reconstructions. Rather than treating
each voxel independently, the SDF representation inherently couples neighboring
predictions through distance-field properties. Each level operates at a different
spatial resolution through successive downsampling and upsampling operations,
allowing the network to simultaneously capture fine vessel details at high res-
olutions while modeling long-range dependencies and global vessel connectivity
at lower resolutions. This hierarchical design allows the network to capture both
fine details and global connectivity.

3.4 Optimization

VesselSDF’s training loss combines supervised learning and geometric constraints
to ensure continuous vessel reconstructions that are both accurate and topolog-
ically coherent, even for thin, branching vessels:

L= A5 Esdf + )\o 'Cocc + )\e £eik + )\q 'Cgauss + )\7‘ £sur~ (4)

Supervised Terms. We use both SDF and occupancy supervision:

; (5)

Lsar = ExEQ‘fSDF(X) — fépr(%)

‘Cocc = _EXEQ [y IOg(fO(X)) + (1 - y) IOg(l - fo(x))}v (6)

where fspr(x) is our SDF prediction, f&pp(x) is the ground-truth SDF, y €
{0,1} is the binary vessel label, and 2 C R3 is the domain of 3D spatial coordi-
nates in our training volume. Note that (2 includes the axial dimension as well,
so these terms are computed fully in 3D (i.e., across neighboring slices), thereby
ensuring consistent supervision throughout the volumetric scan.

Eikonal Regularization. To encourage smooth distance transitions, we enforce
near-unit gradients [7]:

Lot = Exco (0 sor (0)” + (0, Fsor () + (v0-foor(0)*) — 1], (7)
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where v = % accounts for anisotropic voxel spacing along the axial dimension.

By enforcing this constraint, the model more closely approximates the signed
distance property, preventing large deviations in gradient magnitudes that can
lead to geometric artifacts.

Distance-weighted Gaussian Regularization. While the Eikonal term en-
forces local smoothness in the gradient field, high-frequency noise can still persist
in regions far from vessel boundaries. To further suppress such artifacts, we in-
troduce a distance-weighted Gaussian regularizer:

2

Leauss = Exeg‘fSDF(X)’ . HfSDF(X) - Qa(fSDF(X))H . (8)

2

Here, G, denotes a 3D Gaussian blur operator with scalar standard deviation o >
0. This term smoothens the SDF more aggressively in regions where | fspr(x)| is
large (i.e., far from the vessel surface) and thus more prone to noisy fluctuations,
while preserving fine details near the boundary (i.e., where | fspr(x)| & 0). This
distance-adaptive mechanism is key to achieving globally smooth reconstructions
without over-smoothing critical vessel edges.

Surface Regularization. Finally, to suppress spurious or “floating” vessel com-
ponents, we add:

Acsur = ]EXG.Q eXp(_ﬁ |fSDF (X) |>7 (9)

where 8 > 0 is a hyperparameter that controls how strongly near-zero SDF values
are penalized when there is no strong evidence of an actual surface. Larger 3
more aggressively suppresses weak, noisy boundaries.

4 Experiments

Implementation. VesselSDF is supervised on 3D SDF slices. For the occupancy
stage, we employ a 3D U-Net with attention gates that produces voxel-wise
occupancy logits. A second lighter 3D U-Net with two encoder—decoder levels
refines these detached occupancies into the final SDF. Both stages are trained
jointly for 100 epochs without data augmentation to preserve accurate SDF
values using the Adam optimizer with a learning rate of 5 x 10~%. Training is
performed on whole-volume inputs of size 512 x 512 x 16 with a batch size of
16, and marching cubes is applied at a resolution of 512 to extract the output
meshes. The loss weights are set to Ay = 0.1, A\, = 0.01, A, = 0.01, Ay = 0.1,
and A\, = 0.1.

Datasets. We evaluate VesselSDF on two public hepatic vessel segmentation
datasets. The Hepatic Vessels dataset (Medical Segmentation Decathlon - Task
08) [2] contains 303 hepatic veins CT scans with semi-automated vessel annota-
tions obtained via level-set based region growing from expert-placed seed points.
The ground truth includes major hepatic venous structures (portal and hepatic
veins) and hepatic arteries visible in portal-phase CT. The IRCADDb dataset [19]
contains 20 contrast-enhanced abdominal CT scans with fully manual segmen-
tations of liver vascular structures, focusing primarily on hepatic and portal vein
branches. We compute training SDFs from the binary ground truth.
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Table 1. Quantitative Results on the Hepatic Vessels and IRCADb datasets.
Comparison of vessel reconstruction performance using different baselines. We report
volume metrics (Dice Coefficient, Intersection over Union (IoU), and Jaccard similarity
(JD)) and surface metrics (Chamfer distance (CD) x 100 and Hausdorff Distance (HD)).

Hepatic Vessels Dataset

Model Dicet IoU? JD?T CDJ HD|
VesselSDF (Ours) 0.72 0.59 0.48 0.68 4.1
nnU-Net [9] 0.69 0.56 0.45 0.82 4.9
3D SA-UNet [8] 0.64 0.51 0.38 1.3 5.2
3D-UNet [5] 0.53 0.44 0.31 1.6 5.6
IRCADD Dataset (Portal and Hepatic Veins)
VesselSDF (Ours) 0.86 0.82 0.75 0.60 3.5
nnU-Net [9] 0.86 0.82 0.75 0.75 4.2
3D SA-UNet [§] 0.85 0.80 0.72 0.80 4.5
3D-UNet [5] 0.84 0.79 0.72 0.90 5.0

Baselines. We compare to three state-of-the-art volumetric segmentation ar-
chitectures which perform binary voxel classification. 3D-UNet [5], which is a
standard encoder-decoder architecture for medical image segmentation. 3D SA-
UNet [8] extends this architecture with spatial attention modules that adaptively
weight feature responses based on their relevance to vessel structures, particu-
larly beneficial for capturing thin vasculature. nnU-Net [9] which contains two
U-Nets, a low resolution and a higher resolution one.

Evaluation. Our evaluation uses five metrics to assess 3D vessel reconstruction:
Dice Score measures volumetric overlap; Volume IoU assesses 3D segmentation
precision; Jaccard Distance (JD) quantifies topological similarity; and Cham-
fer Distance (CD) and Hausdorff Distance (HD) evaluate geometric accuracy
through average and maximum surface distances.

4.1 Results

We present quantitative results in Table 1 and qualitative results in Fig. 2 where
we demonstrate VesselSDF’s superior vessel and portal vein reconstructions on
the Hepatic Vessels [2] and IRCADD [19] datasets. Our approach preserves thin
vessels and complex branching structures more effectively than the binary voxel
classification baselines (nnU-Net, 3D SA-UNet, and 3D-UNet), yielding more
complete and anatomically coherent reconstructions. Quantitatively, we outper-
form all methods on the challenging Hepatic Vessels dataset and obtain com-
parable performance according to volume-based metrics on IRCADD, where the
numerical results are in general similar across all method, but we significantly
outperform the baselines according to the surface-based metrics.

Ablations. Table 2 quantifies the contribution of each component in VesselSDF .
w/o0 SDF refinement: we remove the second SDF refiner, using only binary occu-
pancy prediction without distance field computation or geometric regularizers.
w/o0 Binary Occupancy: we directly predict the complete SDF (surface and iso-
lines), bypassing our two-stage approach to test whether separating vessel detec-
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Fig. 2. Qualitative 3D reconstruction results on the Hepatic Vessels dataset.
The bottom row displays 2D slices highlighting the segmentation results.

Table 2. Ablations on the Hepatic Vessels dataset.

Model Dicet IoUtT JD| CDJ HDJ
VesselSDF 0.72 0.59 0.48 0.68 4.1
VesselSDF w/o SDF refinement 0.69 0.57 0.52 0.70 4.4
VesselSDF w/o Binary Occupancy| 0.65 0.55 0.56 0.75 4.6
VesselSDF w/o Gaussian Loss 0.72 0.59 0.48 0.70 4.3

tion from geometric refinement is beneficial. w/o0 Gaussian Loss: we remove the
adaptive regularization (Eq. (8)), which results in similar Dice scores but intro-
duces surface artifacts. The full VesselSDF achieves best performance across all
metrics, with SDF refinement particularly enhancing vessel continuity as shown
by the improved reconstruction metrics.

5 Conclusion

We presented VesselSDF a new approach for thin vessel segmentation and recon-
struction. Via a carefully designed two-stage refinement architecture with geo-
metric regularization, VesselSDF addresses many of the geometric artifacts that
can get introduced by a naive application of SDFs to this task. We demonstrate
superior quantitative and qualitative 3D reconstructions compared to baselines
on challenging sparse CT slice data containing hepatic vessels, where our results
exhibit fewer issues such as floating geometry and disconnected structures.
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