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Abstract. Multi-contrast MRI synthesis is inherently challenging due
to the complex and nonlinear relationships among different contrasts.
Each MRI contrast highlights unique tissue properties, but their comple-
mentary information is difficult to exploit due to variations in intensity
distributions and contrast-specific textures. Existing methods for multi-
contrast MRI synthesis primarily utilize spatial domain features, which
capture localized anatomical structures but struggle to model global in-
tensity variations and distributed patterns. Conversely, frequency-domain
features provide structured inter-contrast correlations but lack spatial
precision, limiting their ability to retain finer details. To address this,
we propose a dual-domain learning framework that integrates spatial
and frequency domain information across multiple MRI contrasts for en-
hanced synthesis. Our method employs two mutually trained denoising
networks, one conditioned on spatial domain and the other on frequency
domain contrast features through a shared critic network. Additionally,
an uncertainty-driven mask loss directs the model’s focus toward more
critical regions, further improving synthesis accuracy. Extensive experi-
ments show that our method outperforms state-of-the-art (SOTA) base-
lines, and the downstream segmentation performance highlights the di-
agnostic value of the synthetic results. Code and model hyperparameters
are available at https://github.com/sanuwanihewa/D2Diff
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1 Introduction

Magnetic Resonance Imaging (MRI) offers detailed anatomical and pathologi-
cal insights through images of multiple contrasts [3]. However, acquiring mul-
tiple MRI contrasts poses significant challenges, including high imaging cost,
prolonged scanning times, and potential safety concerns related to gadolinium-
based contrast agents [5,11]. Medical image synthesis provides a powerful ap-
proach to address these challenges by reconstructing missing or corrupted image
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contrasts from available contrasts [18]. However, synthesizing high-fidelity multi-
contrast images remains challenging due to the complex, nonlinear, and often
obscured relationships among contrasts, driven by intensity inconsistencies and
modality-specific textures [5]. Therefore, capturing and aligning these intricate
cross-contrast relationships is critical for an accurate image synthesis model.

Most of the existing methods [5,20,19] focus on fusing features from multi-
ple contrasts, leveraging latent-level operations or hierarchical representations
to model cross-contrast dependencies. Despite these advances, most approaches
[15,20] rely heavily on rigid spatial domain representations and fusion strategies,
which struggle to fully capture the complementary and distributed relationships
across contrasts. Although spatial domain features excel at encoding localized
structures and anatomical integrity, they often struggle to disentangle discerning
intensity variations and overlapping distributions [12,6], particularly in scenarios
with significant heterogeneity across contrasts such as brain lesions[5].

To address these limitations, we propose a dual-domain learning framework,
D2Diff, for multi-contrast MRI synthesis, which employs two denoising networks
that are mutually trained together. The first network is guided by frequency-
domain representations [12,6] and captures structured inter-contrast correlations
such as global intensity shifts and distributed intensity variations. Simultane-
ously, the second network is guided by spatial-domain features and ensures
high-resolution, pixel-level detail fidelity. These networks are trained collabo-
ratively through a shared critic network, which ensures adversarial consistency.
Using a novel uncertainty-aware mask loss, the shared critic facilitates uncer-
tainty estimation, guiding the synthesis process to focus on critical regions. By
leveraging the complementary strengths of spatial and frequency domains, our
framework effectively aligns complex cross-contrast correlations, providing a ro-
bust and accurate multi-contrast MRI synthesis. In summary, our main con-
tributions are: (1) A dual-domain diffusion framework, simultaneously guided
by multi-contrast MRI features in both frequency and spatial domains, and
jointly trained using a shared critic network. (2) A multi-scale frequency fea-
ture integration module for adaptive inter-contrast feature combination to pre-
serve subtle contrast-specific details. (3) A novel uncertainty-aware mask loss
to enhance uncertainty-driven learning. (4) Comprehensive experiments confirm
superior synthesis quality and further validation through downstream segmen-
tation tasks.

2 Method

Problem Formulation. Let X = (Xk,Y k)
m
k=1, be a set of m co-registered MRI

contrast image pairs, where xk denotes the target contrast to be synthesized,
and yk = {yk,i}ni=1, represents n source contrasts used as conditional inputs
to generate the target contrast. We denote the denoising networks as Hj ; j ∈
{1, 2} where encoder-decoder Fj , and dual-domain feature extraction ϕj are
their functional decompositions as,

fj = ϕj(θj ;Y k); Hj(Θ
j ;X ) = Fj(ϕj(θj ;Y k),Xk) j = 1 or 2. (1)
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Fig. 1: Network architecture. A: Overall Architecture with frequency (ϕ1) and
spatial guidance (ϕ2), B: Multi-scale adaptive frequency aggregation in ϕ1.

Dual Domain Diffusion Model. Fig. 1(A) provides an overview of the D2Diff
pipeline, which employs two denoising networks that collaboratively learn using
frequency and spatial domain features from multi-contrast MRI. Diffusion mod-
els consist of two main processes: forward and reverse process [8]. In the forward
process, random Gaussian noise is progressively added to the target MRI con-
trast (x0) to be synthesized as,

q(xt|xt−1) = N (xt;
√

1− βt xt−1, βtI), (2)

where βt is the noise variance schedule that is used to add noise to the data, N
is the Gaussian distribution, and I is the identity covariance matrix. Utilizing
the Markov property of the diffusion process, the marginal distribution of xt can
be directly obtained as follows,

q(xt|x0) = N (xt;
√
ᾱt x0, (1− ᾱt)I), (3)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs. The reverse diffusion process estimates
the posterior distribution pθ(xt−1|xt,yi) to generate a realistic x0 guided by
conditional contrasts yi,

pθ(xt−1|xt,yi) = N (xt−1;µθ(xt, t), σ2
t I), (4)

where µθ(xt, t) is the mean and σ2
t is the variance of the denoising network pa-

rameterized by θ. The noisy target contrast serves as input for both frequency-
and spatial-guided synthesis models. Each denoising network then independently
performs the reverse diffusion process on the perturbed data, leveraging multi-
contrast features in their respective domains to approximate the posterior dis-
tribution parameterized [17] as follows,

pθ(xt−1|xt,yi) := q(xt−1|xt, x̃0 = Hj(xt,yi, z, t)). (5)

Frequency domain learning. Multi-contrast MRI exhibits significant varia-
tions in intensity and resolution across contrasts. The frequency domain struc-
tures spatial patterns into different frequency components, enabling better sep-
aration of global and local intensity variations[12]. To leverage this, we apply
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Discrete Cosine Transform (DCT) [1] to convert spatial variations into fre-
quency representations, aligning non-linear intensity differences. DCT employs
real-valued cosine functions rather than complex exponentials, allowing efficient
decomposition of MRI images into frequency components [16,21]. By transform-
ing multi-contrast images into frequency coefficients, DCT effectively distributes
intensity variability across distinct bands, enhancing feature consistency for syn-
thesis. To achieve this, we used DCT with three different kernel sizes (k) in ϕ1(·),
allowing the extraction of multi-scale frequency features as follows.

hk,yi
= DCTk×k(yi), for k ∈ {3, 5, 7} (6)

where hk,yi is the the extracted frequency contrasts of each yi.
To optimize frequency feature weighting, we introduce a novel adaptive fea-

ture aggregation using a lightweight attention mechanism that assigns impor-
tance scores via a learnable attention module and a convolutional layer. This
refines and projects the combined representation into a common space. The
adaptive frequency fusion (Fig. 1B) selectively emphasizes relevant frequency-
specific information across MRI contrasts as follows,

f1 =
[
Wi ·

∑
k∈{3,5,7}

⟨αk, hk,yi
⟩
]
i∈{1,n} (7)

where Wi is a learnable convolutional transformation layer and αk represents the
adaptive feature combination process as shown in Fig. 1 (B) where a softmax-
based attention (α) mechanism is used to assign dynamic weights (α3, α5, α7)
to determine how much influence each contrast’s frequency features should have
in the final representation. The weighted sum of these features forms the fused
representation f1, to guide the first denoising network.

Spatial domain learning. To preserve fine anatomical details, the second
denoising network is guided by spatial features from multi-contrast inputs in
ϕ2(·). This enhances structural correlations, capturing finer details like edges
and tissue boundaries to aid the denoising process as follows,

f2 = [Ri(yi)]i∈{1,n} (8)

where Ri consists of separate residual blocks for each input contrast, which con-
sist of a convolutional layer followed by a Group Normalization, ReLU activation.

Both denoising networks F1, F2 employs U-Net-based architecture as in [17]
while sinusoidal positional embeddings [8] encode the timestep t with z serving
as the latent vector for conditioning.

HΘ
j (X) = Fj(fj , t, z), j ∈ {1, 2} (9)

Alongside the denoising generators, we employ a shared time-dependent critic
network ψ [17] to ensure collaborative training across them. ψ distinguish be-
tween xt−1 and xt by assessing if xt−1 is a plausible denoised version of xt using
the critic loss Lj

c.

Lj
c (θ

j
H;X ) = Eq(xt|x,yi),pθ(xt−1|xt,yi)[−log(ψ

θ(x
pj

t−1,xt, t))] (10)
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As each denoising network is trained on different feature domains of the same
input contrasts, they can leverage the shared critic network to learn from each
other, maintaining consistency in their predictions. To train the critic network
against the actual ground truths, the predicted outputs (xp1 and xp2) from each
denoising network are used as follows,

Lj
adv(θc;X ) = Eq(xt|x,yi)[Eq(xt−1|xt,yi)η[log(ψ

θ(xt−1,xt, t))]

+(1− η)Epθ(xt−1|xt,yi)[log(1− ψθ(x
pj

t−1,xt, t))]],
(11)

where η = 0 if xt−1 is predicted by a denoising network, and η = 1 if xt−1 is
sampled from the actual target contrast distribution.

Uncertainty aware mask loss. We propose an uncertainty-aware mask loss
that guides denoising networks to focus on high-uncertainty regions during the
synthesis. This is achieved using spatial attention maps from the critic network,
which identify reliable features from the target distribution. Specifically, we con-
sidered middle-layer features (fm) from the critic network, which is sensitive to
discriminative regions extracted via a sigmoid(σ) layer and interpolated (I) to
match the output contrast dimension (dim) as,

Uj = I[σ[ψθ(x
pj

t−1,xt, t)fm ], dim(x)] (12)

To enhance mutual learning across networks, each denoising network lever-
ages the attention maps of other’s output contrast from the shared critic to align
individual predictions. Then, the Binary cross-entropy logistic criteria (BCE) is
employed to quantify discrepancies, encouraging consistent probability estima-
tions and refining focus on critical regions using mask loss Lj

m as,

Lj
m (θjH;X ) = ⟨U2, BCE(xp1 , σ(xp2))⟩+ ⟨U1, BCE(xp2 , σ(xp1))⟩ (13)

We also employed supervised loss Lj
s between individual predictions from

each network and actual contrast as follows,

Lj
s (Θ

j
H;X ) = E(x,yiϵX ) ∥x− xpj∥1 (14)

Then, the two denoising networks are trained by minimizing the objective,

L (Θj
H;X ) =

2∑
j=1

[λs Lj
s (Θ

j
H;X ) + λm Lj

m (Θj
H;X ) + λc Lj

c (Θ
j
H;X )] (15)

where λs, λm, λc > 0 control the contribution of each loss component.

Dual-domain consistency. During the inference process, we start at timestep
T with random Gaussian noise as xt and iteratively refine through T number of
sampling steps. At each step we derive t− 1th sample using Markov property of
forward process[8] as follows,

q(xt−1|xt,x0 = xpj ) = N
(
xt−1; µ̃t(xt,x

pj ), β̃tI
)

(16)
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where µ̃t and β̃t is the mean and variance of the distribution.
To ensure mutual learning between two denoising networks, we derive the

average mean noise predictions across two networks using eq.3 and eq.4 as below,

µ̃tavg(xt,x
pj ) :=

1

2

2∑
j=1

[√ᾱt−1 β̃t

1− ᾱt
xpj +

√
αt (1− ᾱt−1)

1− ᾱt
xt

]
(17)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (18)

Then, we derive denoised contrast at each sampling step as follows,

x̃t−1 = µ̃tavg +

√
β̃t ε; ε ∼ N (ε; 0, I). (19)

3 Experiments

Datasets and Baselines. We evaluated our method on two datasets: the
BraTS2019 brain tumour dataset [13] and a healthy dataset [9]. From the BraTS2019
dataset, we utilized 305 co-registered multi-contrast MR images, including T1w,
T2w, T1CE, and FLAIR. For each scan, we selected 80 middle axial slices, re-
sized them to (256×256), and split the data into 214 subjects for training, 61
for validation, and 30 for testing.

For our healthy dataset, we extracted 100 middle slices from 85 healthy brain
MRI scans. We allocated 50, 20 and 15 subjects for training, validation, and
testing. In both datasets, one contrast served as the synthesis target, while the
remaining contrasts were used as source images to guide the denoising process.

We compared D2Diff with conventional generative networks, Pix2Pix[10],
pGAN[4], DDPM[8], and SOTA MRI synthesis methods including, Hi-Net[20],
MM-GAN[15], and SynDiff[14] adopted in a supervised manner.

4 Experimental Results

The qualitative performance of D2Diff is illustrated in Fig. 2 and 3 for both
healthy and BraTS synthetic results. For healthy subjects, D2Diff better pre-
serves anatomical structures, offering superior contrast details compared to other
methods. In tumour datasets, it improves lesion synthesis, particularly in chal-
lenging tasks like T1CE, where other methods struggle with contrast enhance-
ments. It produces sharper tumour boundaries that closely resemble ground
truths. Additionally, the quantitative evaluation in Table 1 for PSNR, SSIM,
MAE[7] confirms D2Diff’s superiority, outperforming all methods across tasks.

Downstream segmentation task performance. To assess the diagnostic
equivalence of our synthetic results, we conducted tumour segmentation using
the BraTS dataset. A MONAI U-Net[2] was trained on all four contrasts to
predict tumour masks with the same train-test split as synthesis tasks. Table 2
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Dataset Contrast Metric pGAN Pix2Pix DDPM MMGAN Hi-Net SynDiff D2Diff

BraTS

T1CE
PSNR 25.13±1.95 25.64±1.94 24.22±1.81 27.72±2.06 26.92±2.07 28.16±2.36 28.58±2.69

SSIM % 87.34±3.28 88.06±3.15 56.05±7.37 87.47±3.74 90.03±2.94 91.15±2.88 91.84±2.83
MAE % 3.29±1.43 2.93±1.15 25.97±5.61 11.83±6.83 2.66±1.31 2.08±1.14 1.97±1.14

FLAIR
PSNR 25.37±1.90 24.98±1.71 25.60±2.03 24.50±1.73 25.20±1.82 27.13±2.11 27.57±2.18

SSIM % 85.69±3.35 85.19±3.25 76.96±6.57 77.57±5.27 85.88±3.25 89.17±3.50 89.56±3.42
MAE % 3.32±1.57 3.81±1.63 25.97±5.61 17.58±12.37 4.92±2.18 2.65±1.24 2.55±1.30

T2
PSNR 25.70±2.01 25.52±1.89 24.05±1.86 26.01±2.12 26.26±2.04 28.24±2.64 28.73±2.69

SSIM % 89.66±3.80 89.27±3.73 86.23±4.36 87.32±6.40 91.49±3.64 93.05±4.05 93.51±3.97
MAE % 2.50±1.01 2.72±1.28 3.66±1.20 16.93±7.85 2.75±1.28 1.74±0.95 1.65±0.09

T1
PSNR 26.23±1.89 26.71±1.82 24.78±1.70 25.26±1.92 27.19±2.05 29.36±2.83 29.96±2.80

SSIM % 90.94±3.21 91.12±2.96 88.18±3.32 88.11±4.40 93.05±2.83 93.63±3.49 94.13±3.33
MAE % 2.90±1.80 2.46±1.49 3.08±1.33 8.42±5.91 2.42±1.51 1.79±1.53 1.71±1.52

Healthy

FLAIR
PSNR 26.89±1.61 26.89±1.61 23.13±1.66 27.12±1.83 28.32±2.09 29.30±2.31 29.65±2.25

SSIM % 92.03±2.38 91.45±2.94 42.77±6.81 91.48±3.54 94.26±2.15 95.01±2.11 95.34±2.02
MAE % 10.47±8.05 1.81±0.54 3.45±0.70 6.93±3.47 1.50±0.51 1.28±0.44 1.25±0.43

T2
PSNR 25.78±1.28 24.88±1.56 25.19±1.21 26.61±1.20 27.21±1.20 27.70±1.63 28.54±1.67

SSIM % 89.07±3.76 87.26±4.80 79.24±5.80 88.88±4.52 92.00±2.95 92.72±2.90 93.56±2.66
MAE % 25.90±6.70 2.23±0.66 2.35±0.54 16.76±5.96 2.08±0.69 1.51±0.46 1.38±0.43

T1
PSNR 27.68±1.63 26.83±1.89 26.26±1.83 29.60±1.57 29.16±2.00 30.09±2.28 30.82±2.33

SSIM % 93.49±2.49 92.22±3.19 86.85±4.00 93.84±3.08 95.32±2.17 95.76±2.03 96.23±1.91
MAE % 12.43±1.70 1.78±0.56 2.09±0.61 6.85±4.99 1.33±0.52 1.19±0.42 1.10±0.39

Table 1: Performance comparison for healthy and BraTS datasets (mean±std)
for different synthesis contrasts. The best performance is in bold with statistical
significance p < 0.05 based on a paired mean t-test between D2Diff and the
second best performed method.

GT pGAN Pix2Pix DDPM MM-GAN Hi-Net SynDiff D2Diff

T2

Fig. 2: Visualization of synthetic MRI results on healthy dataset.

T1
C
E

GT pGAN Pix2Pix DDPM MM-GAN Hi-Net SynDiff D2Diff

FL
A
IR

T2

Fig. 3: Visualization of synthetic MRI results on BraTS dataset.
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presents the Dice scores values for predicted masks with synthetic results, where
x mark indicates that the corresponding contrast has been replaced by a syn-
thetic contrast, while a ✓ denotes the use of the actual contrast from the test
dataset. Fig. 4 presents qualitative comparisons for the predicted tumour masks.
The "Complete" setup represents segmentation using all actual test contrasts
without synthetic replacements. For comparison, we selected top-performing
methods from each category. Results show that D2Diff closely matches the "Com-
plete" setup, demonstrating clinically reliable and plausible synthesis quality.
Notably, D2Diff achieves slightly higher Dice scores, likely due to the dataset’s
multi-site variability [13], including contrast differences and occasional artifacts.
D2Diff’s diffusion-based dual-domain architecture effectively mitigates these ar-
tifacts and handles contrast variations more robustly, leading to improved seg-
mentation performance.

a

b

c

d

GT Complete pGAN Hi-Net SynDiff D2Diff

Fig. 4: Segmentation results.

Task Contrasts Dice Score% ↑
T1 T2 FLAIR T1CE pGAN Hi-Net SynDiff D2Diff

a ✓ x ✓ ✓ 80.5 80.02 80.91 81.05
b ✓ x ✓ x 80.64 79.70 80.81 81.19
c x x ✓ x 79.96 78.93 80.66 81.02
d x x x x 76.50 73.49 79.31 79.34

complete ✓ ✓ ✓ ✓ 80.83

Table 2: Segmentation performance.
PSNR ↑ SSIM% ↑ MAE% ↓

Freq. guidance (H1) 28.01±2.41 91.24±2.88 2.09±1.19
Spatial guidance (H2) 28.39±2.45 91.82±2.87 2.02±1.30

w/o freq. feat. adaptation 28.54±2.32 91.34±2.82 2.07±1.27
w/o mask loss 28.29±2.40 91.57±2.80 2.04±1.25

D2Diff 28.58±2.69 91.84±2.83 1.97±1.14

Table 3: Ablation study.

Ablation Study. We conducted an ablation study to assess the impact of indi-
vidual components and the dual-domain mutual learning approach. The T1CE
synthesis task was selected to perform ablation as it is one of the most chal-
lenging tasks in tumour synthesis. As shown in Table 3, every component con-
tributes to enhancing overall synthesis quality. The mask loss enhances lesion
delineation—particularly at tumour boundaries where uncertainty is higher, as
illustrated by sample uncertainty maps (U1, U2) in Fig. 1. In addition, the mutual
learning between frequency- and spatial-domain networks leads to more effective
representation learning, resulting in superior synthesis performance over their in-
dividual synthesis outputs. While D2Diff employs two denoising networks, its de-
sign leverages two shallow generators to maintain computational efficiency. The
model contains 68.586M parameters, comparable to SOTA methods which use
conventional diffusion-GAN based approaches like SynDiff with 67.465M, and
achieves an average sampling time of 310.10 ms, only slightly above SynDiff’s
303.70 ms. Thus, despite the dual-network structure, D2Diff does not impose a
substantial computational burden.
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5 Conclusion

In this work, we introduce a dual-domain diffusion framework for multi-contrast
MRI synthesis, leveraging frequency and spatial features to capture both in-
tensity variations and spatial differences across contrasts. Experimental results
demonstrate that D2Diff outperforms baseline methods, producing more accu-
rate synthetic images. Additionally, superior downstream tumour segmentation
highlights the diagnostic value of the synthetic images. Despite these promising
results, the current model is limited to 2D data, and further research is necessary
to validate clinical reliability across multi-centre datasets, diverse clinical settings
and imaging protocol variations. Overall, D2Diff offers a promising approach for
high-fidelity multi-contrast MRI synthesis, contributing to the efficiency and
safety of medical imaging.
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