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Abstract. Accurate prediction of stroke functional outcome, particu-
larly the 3-month modified Rankin Scale (mRS), is crucial for personal-
ized treatment. Vision Transformers excel in medical imaging and mul-
timodal fusion but struggle with stroke MRI due to data scarcity and
rigid tokenization, which may miss subtle anomalies. In response, we
propose the Lesion-Centered Vision Transformer (LC-ViT), integrating
lesion-focused MRI preprocessing, adaptive token merging, and multi-
modal fusion. LC-ViT extracts axial, coronal and sagittal views centered
on ischemic lesions to optimize visibility and employs a pretrained TC-
Former (token-clustering transformer) for adaptative token generation. A
mutual cross-attention mechanism further integrates imaging and clinical
data. Evaluated on a retrospective private cohort comprising DWI MRI
and 62 clinical variables (e.g. demographics, neurological assessments.)
of 119 stroke patients treated with thrombectomy (65% favorable out-
come), LC-ViT achieves a new state-of-the-art performance (AUC:0.80±
0.03, Accuracy: 0.77± 0.02) significantly outperforming single modality
based deep architectures. Our results highlight the potential of lesion-
focused tokenization for stroke outcome prediction and interpretability
and broader applications in lesion-localized multimodal analysis. Our
code is available at https://github.com/mingtian12345/LC-VIT.
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1 Introduction

Stroke is a leading cause of long-term disability, with ischemic stroke accounting
for nearly 87% of all cases [1]. While the advent of reperfusion therapies has
significantly improved ischemic stroke management [2], patient outcomes remain
highly variable. This underscores the critical need for enhanced predictive models
to assist clinicians in better anticipating recovery trajectories. In this study,
we focus on predicting the modified 3-month Rankin Scale (mRS) metric, a
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widely recognized clinical measure of stroke outcomes which serves as a key
benchmark for evaluating both recovery and the effectiveness of interventions
[4]. We develop a deep prognostic model that combines clinical data from patient
EHRs with 3D MRI to predict mRS, a 7-point disability scale binarized in this
study, with 0–2 indicating a favorable outcome.

Recent deep learning advances, especially Vision Transformers (ViTs) [5],
have demonstrated potential for medical image analysis [8]. ViTs typically re-
quire large training datasets, a challenge in stroke outcome prediction. Addition-
ally, 2D ViT models pre-trained on large datasets like ImageNet are not directly
applicable to 3D MRI due to dimensional mismatches. Triamese-ViT [10] ad-
dresses this limitation by transforming 3D MRI scans into three anatomically
relevant 2D views (axial, sagittal, and coronal) centered on the brain, preserv-
ing spatial information. This architecture has demonstrated strong performance
in brain age estimation. Traditional ViT tokenization, which segments images
into fixed-size patches, may be suboptimal for medical imaging, as different re-
gions hold varying clinical significance [11]. To address this, recent works have
refined tokenization strategies [11,12,13], with Token Clustering Transformer
(TCFormer) [19,20] achieving state-of-the-art results through adaptive token
merging.

Traditional machine learning models have been used to predict stroke out-
comes from clinical data [3]. However, combining clinical and imaging features
remains challenging. Hatami et al. [9] improved predictions by using a CNN
combined with an LSTM that incorporated single clinical variables. Both [14]
and [15] leveraged XTab [16]– a pre-trained tabular transformer – to fuse im-
age descriptors with clinical data. While [14] was not specific to stroke, [15]
applied it to sroke outcome prediction by integrating radiomics-derived quanti-
tative features from DWI MRI with clinical data. Additionally, attention-based
multimodal fusion models have shown promising results across various medical
applications [21,22,23,24,25,26,27].

Building on this state-of-the-art, we propose the lesion-centered ViT (LC-
ViT) for stroke outcome prediction. LC-ViT maximizes lesion visibility, en-
hances lesion-specific feature extraction, and efficiently fuses structured clinical
data with 3D MRI data. Our contributions are: (1) LC-ViT, which integrates
lesion-centered views and adaptive vision transformers for improved stroke le-
sion feature extraction, (2) TCFormer’s adaptive token merging, repurposed for
MRI, dynamically adjusting token boundaries to better represent lesion struc-
tures and (3) a framework combining LC-ViT’s imaging features with mutual
cross-attention mechanism for clinical data fusion, improving both accuracy and
interpretability of stroke outcome prediction.

2 Method

2.1 Framework Overview

As shown in Fig. 1, our framework consists of three key components: (a) an
enhanced Triamese-ViT based image encoder referred to as LC-ViT for lesion-
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centered ViT, (b) a clinical tabular data encoder based on simple MLP, and (c) a
classification module encompassing a mutual cross-attention module followed by
a simple classification head. In (a), 3D MRI images are first preprocessed to man-
ually segment the lesion, then automatically compute the lesion mask centroid
and extract the three anatomical planes centered on the lesion in 3D Slicer [7].
These views are inputted to a pretrained TCFormer model. In (b), clinical data
first undergo preprocessing steps including missing values imputation and one-
hot encoding for categorical variables, then are mapped into a embedding space
by a two-layers MLP for alignment with image features through cross-attention
fusion. In(c), a mutual cross-attention module integrates imaging and clinical
embeddings by capturing global relationships. The fused features are then pro-
cessed by a classifier with two linear layers, a LeakyReLU activation, and a final
logit output for prediction.
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Fig. 1: Overview of the proposed framework (a) LC-ViT encoder based on the
pretrained TCformer-light (b) Clinical MLP encoder (c) Mutual cross-attention
fusion. The red point refers to lesion centroid and green mask refers to lesion.

2.2 LC-ViT

Enhanced Triamese-ViT Triamese-ViT [10] addresses the computational chal-
lenges of encoding high-dimensional 3D MRI by extracting three orthogonal 2D
planes (axial, coronal, sagittal) intersecting at the brain center, enabling the
use of pre-trained 2D ViTs while preserving essential spatial information. In-
spired by this architecture, we propose to adapt it to our task and center the
three anatomical views on the stroke lesion centroid, instead of the brain center
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(Fig. 1-a). This ensures lesions remain maximally visible across all slices, allowing
the model to capture lesion-specific features critical for stroke prognosis.

TCformer TCFormer [19,20], as shown in Fig. 2, is a novel vision transformer
model which employs a progressive clustering strategy to merge tokens, allow-
ing flexible token shapes and sizes based on image regions. Each stage contains
stacked transformer blocks followed by a token merging block. Using a KNN-
based density peaks clustering algorithm, it merges similar tokens while preserv-
ing critical details through a Multi-stage Token Aggregation (MTA) head. This
enables TCFormer to prioritize clinically relevant areas by dynamically adjust-
ing tokenization. For stroke outcome prediction, we leverage this mechanism to
focus on lesion regions while merging background tokens, reducing noise and
enhancing feature extraction.Tokens distribution in TCformer (P0006),after HD-BET
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Fig. 2: The architecture of the TCFormer model (inspired by TCFormer [19,20]).

2.3 Mutual Cross-Attention

Cross-attention enables interaction between two modalities by learning their re-
lationships through attention weights and has been widely used in multimodal
fusion tasks [21,22,23,24,25,26,27]. In simple cross-attention, one modality serves
as the query (Q), while the other provides the keys (K) and values (V). The atten-
tion mechanism computes the relevance between Q and K, then aggregates V to
generate the query representation. Mutual cross-attention [22,24,25,26] extends
simple cross-attention by enabling bidirectional interactions between modalities.
Instead of a single-directional query-key relationship, both modalities serve as
queries and key/value pairs for each other, capturing richer interdependencies.
This approach is particularly useful in tasks where modalities provide comple-
mentary information, such as aligning clinical data with image features for stroke
outcome prediction. In this study, clinical features act as Q, while image features
provide K and V in the simple cross-attention mechanisms, and serve alterna-
tively as the query and key/value pairs in the mutual cross-attention scenario.
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Reference Input image Stage 1 Stage 2 Stage 3 Stage 4

Case 1

Case 2

Case 3

Fig. 3: Visualization of token distribution at each stage for different cases (small
lesion, large lesion, and invisible lesion), with the same number of token for all
images, equal to 3136, 784, 196, and 49, for stage 1 to 4 respectively.

3 Experiments

3.1 Dataset

Clinical data Our private cohort comprises 119 ischemic stroke patients en-
rolled in an ongoing single-center observational study approved by the local
ethics committee (IRB number: 00009118). All patients were treated with thrombec-
tomy. Clinical data, consisting of 62 variables selected by clinicians for their rele-
vance to patient outcomes, were extracted from hospital records. These variables
encompass demographics (9 variables), neurological assessments (e.g., NIHSS),
medical history (21 variables), treatments details (3 variables). It also includes
numerical clinical indicators (17 variables), such as blood test results and radi-
ological scores, as well as time-related data from admission to treatment stages.
Missing data were handled with tailored imputation: mean substitution for con-
tinuous variables (e.g., weight), most frequent value for binary categorical vari-
ables and a "missing" category for treatment-related data. Categorical variables
were one-hot encoded, yielding 85 features after preprocessing. All features were
normalized to [0, 1] to ensure comparability for model training.

Image data All patients underwent a standardized protocol, including MR
DWI acquisition at the acute stage. The original 3D volumes wereand skull
stripping was performed using HD-BET [29]. Expert neuroradiologists manually
annotated lesions on the early scans. Subsequent preprocessing was performed,
during which the excess black background was cropped that preserved a 20-pixel
margin on both the left and right sides for all volumes and each view was resized
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from the original 192×192×27 to 224×224x27 to fit the input dimension of the
TCFormer network.

3.2 Experiments and implementation details

We evaluated the performance of our proposed LC-ViT architecture and com-
pared it to baseline approaches using image-only, clinical-only or multimodal
(image and clinical) inputs. For image-based models, we assessed 3D ViT [17]
and a radiomics-based model [15]. For structured clinical data-only models, we
compared standard machine learning methods including Random Forest, Logis-
tic Regression, XGBoost [18], and MLP as these models are known to mitigate
overfitting on small datasets and perform well on tabular data. We also included
a comparison with an hybrid model proposed in [15], which encodes image fea-
tures by using radiomics and uses XTab for clinical data fusion.

Then, we conducted an ablation study to assess the contributions of LC-ViT’s
components (Fig. 1). For image encoding block (a), we analyzed the prognostic
value of each orthogonal view in the triamese network and evaluated lesion-
centered vs. brain-centered views. We also replaced the TCFormer network with
standard ViT and ResNet backbones. For fusion block (c), we compared mutual
vs. simple cross-attention for multimodal fusion.

We performed 10 independent iterations of 10-fold cross-validation. Each
iteration used 8 folds for training, 1 for validation, and 1 for testing. Probability
outputs from test folds were aggregated for final predictions. A threshold value of
0.36, reflecting the positive sample ratio, was applied for binary mRS prediction.
To ensure reproducibility, we conducted experiments with 10 different random
seeds and reported the mean and standard deviation across runs. We assessed
models using AUC-ROC, specificity, sensitivity, F1 score, mean absolute error
(MAE), and accuracy. Since stroke interventions carry inherent risks, specificity
was prioritized over sensitivity.

LC-ViT was implemented in PyTorch and trained on a NVIDIA RTX A4000
GPU using the Adam optimizer (learning rate = 0.0001, batch size = 16, 100
epochs with early stopping at 10). 3D ViT followed hyperparameters from [17].
Machine learning models were trained using scikit-learn [28]. The MLP for clin-
ical data consists of two hidden layers and a final linear layer for classification.

4 Results

4.1 Performance of LC-ViT and comparison with baseline models

Our fusion strategy integrates both imaging and clinical information, to leverag-
ing complementary features from each modality. As shown in Table 1, our fusion
model consistently outperforms individual image- and clinical-based models. It
achieves the highest AUC (0.80 ± 0.03), accuracy (0.77 ± 0.02), and specificity
(0.86 ± 0.03) while maintaining a low mean absolute error (0.23 ± 0.02). It is
worth mentioning that our hybrid model’s probability outputs were predomi-
nantly near 0 and 1, making it robust to threshold variations. These results
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Table 1: Evaluation of different models for stroke outcome prediction across three
modalities: image, clinical, and fusion.
Input Methods AUC(↑) ACC(↑) SENS(↑) SPEC(↑) F1(↑) MAE(↓)

Image 3D ViT 0.51± 0.01 0.57± 0.02 0.29± 0.07 0.73± 0.07 0.32± 0.05 0.43± 0.02
Radiomics[15] 0.64± 0.02 0.60± 0.03 0.57± 0.05 0.62± 0.05 0.50± 0.03 0.40± 0.03

Clinical

Random Foreast 0.71± 0.02 0.65± 0.03 0.62± 0.07 0.67± 0.02 0.56± 0.04 0.35± 0.03
Logistic Regression 0.77± 0.03 0.73± 0.03 0.64± 0.05 0.78± 0.04 0.63± 0.05 0.27± 0.03
XGBoost 0.68± 0.04 0.66± 0.04 0.53± 0.05 0.72± 0.05 0.52± 0.04 0.34± 0.04
XTab 0.73± 0.04 0.69± 0.03 0.62± 0.07 0.73± 0.04 0.58± 0.05 0.31± 0.03
MLP 0.75± 0.02 0.69± 0.04 0.65± 0.06 0.72± 0.02 0.60± 0.05 0.31± 0.04

Fusion
XTab[15] 0.75± 0.02 0.72± 0.02 0.68 ± 0.05 0.73± 0.05 0.63± 0.02 0.28± 0.02
Ours 0.80 ± 0.03 0.77 ± 0.02 0.62± 0.06 0.86 ± 0.03 0.66 ± 0.04 0.23 ± 0.02

highlight the advantages of multimodal learning, as our fusion approach effec-
tively combines different data sources to improve stroke outcome prediction.
Furthermore, the visualization of token distribution in Fig 3 demonstrates that
our approach effectively captures clinically relevant regions.

4.2 Ablation study

Table 2 evaluates the impact of using multi-view lesion-centered Triamese-ViT
and cross attention mechanisms on model performance. In the image-only con-
figuration, incorporating lesion information from multiple views (axial, coronal,
and sagittal) improves both AUC and accuracy (AUC = 0.68 ± 0.02; ACC =
0.66 ± 0.03) compared to single-view inputs and to the standard Triamese-ViT
implementation based on brain-centered views (AUC = 0.63 ± 0.04; ACC =
0.61 ± 0.03). The fusion model, which combines image and clinical features,
further enhances results. Adding, a simple cross attention mechanism improves
performance (AUC = 0.78 ± 0.02; ACC = 0.73 ± 0.02) compared with single
modality models, but replacing it with a mutual cross attention strategy leads
the highest scores (AUC = 0.80± 0.03; ACC = 0.77± 0.02). These results high-
light the benefit of multi-view lesion integration and the importance of effective
information exchange across modalities.

Table 2: Evaluation of lesion-centered multi-view inputs and cross-attention
mechanisms on stroke outcome prediction.
Input Lesion Triamese-VIT Cross Attention Results

Axial Coronal Sagittal Simple Mutual AUC(↑) ACC(↑)

Image

✓ ✓ 0.66± 0.02 0.63± 0.02
✓ ✓ 0.67± 0.03 0.64± 0.03
✓ ✓ 0.57± 0.02 0.59± 0.01

✓ ✓ ✓ 0.63± 0.04 0.61± 0.04
✓ ✓ ✓ ✓ 0.68± 0.02 0.66± 0.03

Fusion ✓ ✓ ✓ ✓ ✓ 0.78± 0.02 0.73± 0.02
✓ ✓ ✓ ✓ ✓ 0.80 ± 0.03 0.77 ± 0.02
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Table 3 compares the proposed TCFormer architecture against baseline mod-
els (ViT-Tiny, ResNet-18, and ResNet-50). We kept other settings unchanged
and only swapped the TCFormer backbone, while ensuring that all baselines
were pre-trained on ImageNet-1K. TCformer outperforms all baselines, achiev-
ing the highest AUC (AUC = 0.80±0.03) and accuracy (ACC = 0.77±0.02) while
maintaining a reasonable parameter count (14.2 M). We performed a Wilcoxon
two-sided test to evaluate the statistical significance of the AUC. The Wilcoxon
test confirms that TCFormer’s improvements are significant, with p-values below
0.05 for all baseline models. These ablation results show that both the multi-view
Triamese-VIT design and the mutual cross-attention mechanism, along with the
architectural choices in TCformer, contribute to the performance gains observed.

Table 3: Comparison of the proposed TCFormer backbone with ViT-Tiny,
ResNet-18, and ResNet-50.
Model #params AUC(↑) ACC(↑) Sens(↑) Spec(↑) F1(↑) MAE(↓) P-value
ViT-Tiny 5.5M 0.77± 0.03 0.72± 0.03 0.60± 0.04 0.78± 0.04 0.60± 0.04 0.28± 0.03 0.0137

ResNet-18 11.7M 0.77± 0.02 0.74± 0.03 0.62± 0.04 0.81± 0.04 0.63± 0.04 0.26± 0.03 0.0098

ResNet-50 25.6M 0.76± 0.02 0.74± 0.03 0.60± 0.06 0.81± 0.03 0.62± 0.05 0.26± 0.03 0.0020

TCFormer 14.2M 0.80 ± 0.03 0.77 ± 0.02 0.62 ± 0.06 0.86 ± 0.03 0.66 ± 0.04 0.23 ± 0.02 -

5 Conclusion

In this study, we introduced LC-ViT, a lesion-centered vision transformer de-
signed to enhance the extraction of lesion-specific features from 3D MRI data.
By leveraging dynamic token clustering, it effectively captures clinically signifi-
cant regions. Additionally, the integration of a mutual cross-attention mechanism
for fusing imaging and clinical data further improves predictive performance for
stroke outcomes, particularly in forecasting the 3-month mRS. Our extensive ex-
periments demonstrate that the proposed framework not only outperforms con-
ventional deep learning models and standard ViT architectures but also achieves
statistically significant improvements in key evaluation metrics. These results
validate the efficacy of our lesion-centric approach and highlight the potential
of adaptive tokenization and mutual cross attention in addressing the challenges
posed by limited training data and heterogeneous clinical information.

Nonetheless, our study is subject to certain limitations. The relatively small
dataset size constrained our ability to fully optimize the TCFormer architecture.
Future work will focus on larger, more diverse datasets to refine our model fur-
ther. Additionally, as TCFormer is capable of effectively capturing lesion tokens,
we plan to investigate using lesion-specific tokens as the final classification fea-
ture, potentially improving lesion representation. Furthermore, as our approach
only requires lesion center input, we aim to incorporate automated segmentation
models, such as Medical SAM [30], for more efficient lesion extraction, enabling
broader dataset optimization.
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Overall, LC-ViT shows strong potential as a robust tool for stroke outcome
prediction and could be adapted for broader medical imaging applications where
precise lesion characterization is critical.
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