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Abstract. Stroke diagnosis in emergency rooms (ERs) is challenging
due to limited access to MRI scans and a shortage of neurologists. Al-
though AI-assisted triage has shown promise, existing methods typically
use MRI-derived training labels, which may not align with stroke pat-
terns in patient multimedia data. To address this mismatch, we propose
an Adaptive Uncertainty-aware Stroke TrIage Network (AUSTIN)1, that
leverages inconsistencies between clinician triage decisions and MRI-
derived labels to enhance AI-driven stroke triage. This approach mit-
igates overfitting to clinician-MRI disagreement cases during training,
significantly improving test accuracy. Additionally, it identifies high-
uncertainty samples during inference, prompting further imaging or ex-
pert review. Evaluated on a clinical stroke patient dataset collected in an
ER setting, AUSTIN achieves over 20% performance gain over human
triage and a 13% improvement over a prior state-of-the-art method. The
learned uncertainty scores also show strong alignment with discrepancies
in clinical assessments, highlighting the framework’s potential to enhance
the reliability of AI-assisted stroke triage.
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1 Introduction

Stroke is a leading cause of disability and mortality worldwide [11]. Early diag-
nosis and intervention significantly improve survival outcomes and post-stroke
quality of life. However, delays due to misdiagnosis and underdiagnosis are com-
mon, and limited treatment options often arise during stroke presentation, eval-
uation, diagnosis, and management [1,21]. The gold standard for stroke diag-
nosis is advanced neuroimaging such as diffusion-weighted MRI, known for its
high sensitivity and specificity in detecting brain infarcts. Despite its accuracy,
⋆ These authors contributed equally to this work.
1 Source code for the framework is at https://github.com/shuashua0608/AUSTIN.

https://github.com/shuashua0608/AUSTIN
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Fig. 1: Illustration of our motivation. Traditional AI-based stroke triage meth-
ods [2,24] are trained solely using MRI-based labels, where clinician triage deci-
sions are used only for performance comparison. In contrast, AUSTIN leverages
the (in)consistency between MRI-based labels and clinician triage outcomes to
adaptively estimate the uncertainty of each training instance. This helps reduce
overfitting to ambiguous cases—where clinician and MRI labels disagree—during
training, while enabling the identification of high-uncertainty samples at infer-
ence time for further imaging or expert review.

MRI accessibility in emergency rooms (ERs) is limited due to scarce availabil-
ity and high operational costs. Therefore, in ER triage, clinicians often rely on
standardized assessments such as the National Institutes of Health Stroke Scale
(NIHSS) [18], which evaluate unilateral facial droop, arm drift, and speech im-
pairment. However, the shortage of experienced neurologists [14] and the subtle
presentation of these symptoms [24] can compromise the accuracy of stroke triage
in critical cases.

Recent advances in machine intelligence have shown promise in identifying
neurological disorders through multimedia analysis. Cai et al. [2] introduced
DeepStroke, an effective stroke triage framework tailored for ER environments,
utilizing face video frames and speech data for stroke detection. Ou et al. [19]
proposed a multimedia framework that utilizes patient motion video and speech
spectrograms, while Yu et al. [24] developed a method for evaluating facial im-
agery and speech transcripts. More recent efforts have expanded to deploying
such frameworks on mobile platforms [3]. Nevertheless, existing multimedia-
based stroke triage methods typically derive their training labels directly from
diffusion-weighted MRI scans and then attempt to predict stroke presence in un-
seen test data (Fig. 1). This process assumes a direct correlation between MRI
findings and stroke symptoms observable in patient videos. This assumption may
be flawed since MRI captures structural brain abnormalities that may not con-
sistently manifest as clear motor or behavioral deficits, potentially introducing
discrepancies between training data and model predictions.
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Relying solely on MRI-based labels to train a multimedia-based stroke triage
model may be suboptimal, as it forces the AI model to assess stroke presence
with MRI-level accuracy using only multimedia data—despite fundamental dif-
ferences across clinical protocols. This mismatch, illustrated in Fig. 1, moti-
vates our approach: we integrate clinician triage decisions as complementary
supervision during training and enhance the model with uncertainty estimation
alongside stroke presence prediction, providing more reliable decision support
for clinicians in ER setting. Specifically, we propose AUSTIN, the Adaptive
Uncertainty-aware Stroke TrIage Network, a novel model that preserves MRI-
based supervision while accounting for higher uncertainty in cases when clinician
triage assessments conflict with MRI labels. This design recognizes that some
cases are inherently ambiguous based on video data alone—for instance, when
an MRI-confirmed stroke lacks clear motor abnormality patterns in videos, or
when a non-stroke patient exhibits misleading motor abnormalities.

Allowing for higher uncertainty in ambiguous cases—where clinician triage
and MRI labels disagree—offers two key advantages. First, at inference time,
it enhances clinical relevance by flagging uncertain cases for further imaging or
expert review, aligning with real ER decision-making. Second, during training,
it preserves the strengths of MRI-based supervision while introducing flexibility,
thereby preventing overconfident predictions in cases with inconclusive evidence.
Importantly, when subtle but discriminative visual or auditory patterns are de-
tectable, the model remains capable of confidently aligning its predictions with
MRI labels, even when those labels differ from clinician assessments.

We implement AUSTIN within a vision-audio classification framework and
evaluate it on an in-house stroke patient dataset collected in an ER setting.
Comprehensive experiments demonstrate that our method significantly enhances
stroke triage performance, with an over 20% performance gain compared to hu-
man triage and a 13% improvement over the prior leading method. The learned
uncertainty scores align closely with discrepancies in clinical assessments, en-
abling a grounded risk estimation proxy in AI-assisted stroke triage.

2 Methods

Dataset. The clinical dataset adopted in this study focuses on multimedia-based
AI triage for mild to moderate acute strokes. Participants include patients ad-
mitted to the ER with neurological symptoms2. Each patient was video-recorded
using a mobile phone while describing the “Cookie Theft” picture, as instructed
by the NIH Stroke Scale [18], to assess their cognitive and speech abilities. For
each video, the discharge binary ground truth— referred to as the MRI label—
is derived from diffusion-weighted MRI, indicating the confirmed presence or
absence of stroke. We also introduce a binary label, referred to as the triage
label, which captures the clinician triage outcomes, representing the nurse’s
impression of the presence of stroke-related symptoms.
2 This study was approved by Institutional Review Boards (IRBs) of Houston

Methodist (Protocol No. PRO00020577) and Penn State (Site No. SITE00000562).
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The final cohort consists of 249 participants, including 171 positive cases
and 78 negative cases for stroke based on MRI-confirmed ground truth. The
cohort reflects diversity in races, ages, and genders. To promote generalizability
of the proposed methods, we use temporal holdout as a proxy for prospective
testing during model development and evaluation. Specifically, 170 participants
are allocated for training, 36 for validation, and 43 for testing.

Multimedia Stroke Screening Model. The acquired multimedia data un-
dergoes preprocessing before encoding. Video frames are processed using face
detection, tracking, and motion estimation to extract near-frontal views that
exhibit meaningful motion, following current best practices [2]. The extracted
frame segments are assembled into N video clips, each of fixed length L frames.
Corresponding audio is extracted, trimmed of silent intervals, and evenly sliced
to align with the N video clips. These sliced audio segments are then converted
into log-mel spectrograms.

Capturing subtle stroke-related features from various modalities remains a
significant challenge. As demonstrated in Fig. 2, we propose a 3-path encoder for
multimedia data encoding, comprising a frame pathway, a local audio pathway,
and a global audio pathway. For the facial video, we adopt an image encoder Ef ,
pre-trained on common face image benchmarks, and encode each processed face
frame into feature space. Regarding the speech audio, it is important to note
that patients typically present similar speech content, and embedding methods
that prioritize downstream transcription tasks are not appropriate. Meanwhile,
clinicians tend to focus more on global speech patterns such as pace and slurs.
Therefore, we adopt a global audio encoder Ea to encode the whole speech audio.
To enhance frame-level facial video features, we introduce a Siamese network
Es which integrates temporally aligned, fine-grained local audio features from
the local audio pathway into the frame pathway at multiple stages. Es is an
image encoder that follows the same structure as Ef but operates on audio
spectrograms. Frame-level features from the frame and local audio pathways are
temporally aggregated with a trainable, parameter-efficient state-space modeling
layer as a clip-level feature, which is concatenated with the global audio feature
in a late-fusion scheme. We denote the final feature as h.

Adaptive Uncertainty-Aware Loss. To handle uncertainty in stroke diagno-
sis, especially considering the cases where MRI and triage labels are inconsistent,
we propose to utilize both labels to enhance the overall model performance. We
denote the ground-truth MRI labels and triage labels as yMRI and ytriage, re-
spectively. Specifically, we propose an adaptive uncertainty-aware loss into our
stroke diagnosis model, which dynamically adjusts the model’s learning focus and
enables further evaluation with the learned uncertainty scores. This novel loss
function allows the model to efficiently learn from high-confidence cases—where
yMRI and ytriage agree—while capturing uncertainty in cases of disagreement.
The uncertainty-aware loss function also provides potential explanations for the
uncertainty associated with each patient case, offering deeper insights into clin-
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Fig. 2: Overview of the proposed AUSTIN framework. This model comprises
three pathways: the frame pathway and a local audio pathway form a Siamese-
like network, enabling multi-level feature fusion, with temporal aggregation cap-
turing temporal dynamics. A global audio pathway is implemented via an audio
encoder with global attention. Additionally, the model encoder is enhanced with
an uncertainty head incorporating our proposed adaptive uncertainty loss func-
tion and a disentangling module for adversarial training.

ical diagnosis. Inspired by [13], this loss function is formulated as follows:

LUncert. =
1

2σ2
LCE + w log(σ + ϵ) , w = exp(−α|yMRI − ytriage|), (1)

where LCE is cross-entropy loss between yMRI and the predicted output ŷ from
the prediction head, w is a weight adaptively adjusted based on agreement be-
tween yMRI and ytriage, and σ is the output logits from the uncertainty head
that represents the learned uncertainty score for each patient case. The con-
stant ϵ (set to 1 in our experiments) ensures numerical stability and guarantees
that the second term in the loss function remains positive. The first term in
Eq. 1, LCE/2σ

2, penalizes prediction errors relative to yMRI; the uncertainty
score σ scales the penalty, forcing the model to assign higher uncertainty to am-
biguous patient cases where yMRI and ytriage are inconsistent. The second term,
w log(σ+ϵ), regularizes the uncertainty score σ, with w capturing the differences
between MRI and triage labels. When yMRI and ytriage are consistent, i.e., w=1,
the model is encouraged to reduce σ, reflecting higher confidence in making final
predictions. Conversely, when these two labels disagree, the second term scales
to e−α, allowing σ to remain high, indicating potential difficulty in predicting
‘uncertain’ patient cases.

The learned uncertainty score σ potentially provides meaningful insights into
the model’s confidence in clinical diagnosis and indicates the consistency of clin-
ical assessments. Ideally, lower σ values indicate high confidence in prediction,
generally associated with cases where triage and MRI labels agree or where deci-
sions are easier to make. In contrast, higher σ values reflect greater uncertainty,
corresponding to cases with label disagreement or complex patient presentations
that may require further clinical evaluation. As demonstrated in Sec. 3.2, analy-
sis of the distribution of σ values enables explainable assessment of the diagnosis
model. This provides clinicians with valuable cues for identifying patterns that
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contribute to misalignment between triage assessment and MRI-confirmed diag-
noses.
Overall Training Objectives. Following previous practice [2], we also adopt
a discriminative network with adversarial loss to perform identity disentangle-
ment, aiming to generate identity-free audio-visual features. Given a pair of video
frames, which may come from the same or different subjects, we encode their
features as hi and hj . A discriminator, denoted as D, then predicts whether hi

and hj belong to the same person. The training loss for D takes the form of
Mean Squared Error (MSE), as LS-GAN adopts [16]:

LDis =
∑
i,j

∥δij −D(hi, hj)∥2 , Ladv,E = −
∑
i,j

∥0.5−D(hi, hj)∥2 , (2)

where δ is the Kronecker delta function, defined as δij = 1 when i = j and 0
otherwise. The final model encoder training loss LE is composed of two com-
ponents. The first component is the aforementioned adaptive uncertainty-aware
loss, LUncert.. The second component is an adversarial loss imposed on the en-
coder Ladv,E to adversarially promote uncertainty in the output of D, thereby
enhancing the robustness of the model against overfitting and improving its
ability to generalize to unseen data. The total training loss is formulated as
LE = LUncert. + λLadv,E with tunable λ. We train E and D iteratively like GAN
[7] that alternates parameter update and freezing between E and D.

3 Experiments

3.1 Setup and Implementation

We perform face preprocessing with the PLFD model [8]. We set N = 7 and
L = 64 during preprocessing. We configured M = 128 audio log-mel bins and
employed a hidden dimension of 600. For the backbone of the frame pathway,
we have assessed the effectiveness of face-pretrained transformer models [5] and
VideoMAE [22], but neither surpasses a face-pretrained ResNet [9]. Performance
comparisons are detailed in the ablation studies. The multimedia frame-level en-
coder consisted of a ResNet-50 face frame encoder pretrained on the FairFace
dataset [12] and a ResNet-18 local spectrogram encoder pretrained on the ESC-
50 dataset [20]. We adopt the Structure State-Space Model (S4) [10] for temporal
feature aggregation. We leverage One-Peace [23], a top-performing audio trans-
former, for extracting global audio features. The discriminator D employed a
fully convolutional network (FCN) [15] with three layers. During training, all
encoders, including ResNets and One-Peace, had parameters frozen. The tem-
poral module S4, classification head, uncertainty head, and module D received
gradient updates. We trained the model using a batch size of 32, with a learn-
ing rate of 1e−4 and a dropout ratio of 0.2. The best-performing model on the
validation set was retained. Training for 100 epochs took about six hours on an
NVIDIA V100 GPU.
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Table 1: Main Performance Comparison. Results are reported on the temporal
holdout test data. Due to the imbalance ratio in the dataset, we use AUC as the
benchmark (not computed for triage performance due to binary label).

Model Accuracy Specificity Sensitivity AUC

Clinician Triage Performance 0.5349 0.5385 0.5333 -
DeepStroke (SoTA) 0.6977 0.6154 0.7333 0.6564

Proposed Encoder w/o LUncert. 0.6047 0.6923 0.7000 0.6658
+ LUncert. w/ Fix w = 1 0.6976 0.6154 0.7333 0.7128

+ Adaptive w (AUSTIN) 0.7442 0.7692 0.7333 0.7897

3.2 Stroke Diagnosis Model Performance

To evaluate the proposed model AUSTIN, we carried out extensive experiments
to demonstrate its effectiveness, including comparison with a state-of-the-art
(SoTA) stroke diagnosis model DeepStroke [2]. All reported results are based on
the aforementioned temporal holdout test set with 43 patients. We measured
model performance using Accuracy, Specificity, Sensitivity, and AUC. The main
performance comparison is presented in Table 1. AUSTIN significantly outper-
forms clinician triage, with gains of 21%, 23%, and 20% in accuracy, speci-
ficity, and sensitivity, respectively. It also surpasses the DeepStroke framework
with 13% AUC improvements, establishing a new SoTA for AI-assisted stroke
triage. Breaking down these gains, the proposed 3-path encoder with a simple
CE loss improves AUC by 3% over DeepStroke. Incorporating uncertainty esti-
mation into the framework further enhances performance, with the weight-fixed
uncertainty loss contributing an additional 3% improvement. With the help of
adaptive weighting, the final proposed AUSTIN model achieves over 13% per-
formance margin in terms of AUC, validating the effectiveness of integrating
adaptive uncertainty-aware loss into our model.
Ablation Study. Theoretically, the proposed 3-path encoder can take arbitrary
backbones and can be easily generalized to other related tasks. We demonstrate
the impact of different encoders on model performance. We evaluated several
SoTA vision backbones specifically designed for facial feature encoding, including
vision transformer (FaceXFormer) [17] and VideoMAE (MARLIN) [4]. Besides
the adopted One-Peace audio transformer, we also evaluated the Audio Spectro-
gram Transformer (AST) [6]. Note that the uncertainty loss was not included
when benchmarking these models. As shown in Table 2, our chosen vision and
audio backbones outperform other models in multimedia stroke detection.
Uncertainty Evaluation. To gain deeper insight into the proposed uncertainty-
aware loss, we analyzed the estimated uncertainty values σ in relation to the
consistency between MRI and triage labels, with results shown in Fig 3. Fig. 3a
presents the kernel density estimation (KDE) plot of the mean σ values for
each patient case, indicating a distributional shift in uncertainty values between
consistent and inconsistent cases: inconsistent cases exhibit higher uncertainty
scores. Fig. 3b further categorizes σ distribution based on four possible MRI-
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Table 2: Ablation Study on Model Configuration.
Vision Global Audio Local Audio Accuracy Specificity Sensitivity AUC

ResNet50 One-Peace ResNet18 0.6047 0.6923 0.7000 0.6658

ResNet50 AST ResNet18 0.6977 0.6154 0.7217 0.6564
ResNet50 ✕ ResNet18 0.5584 0.4846 0.6333 0.5821

✕ One-Peace ✕ 0.5814 0.4615 0.6333 0.5897

FaceXFormer One-Peace ✕ 0.6279 0.6154 0.6333 0.6051
MARLIN One-Peace ✕ 0.6279 0.5846 0.6667 0.6129

(a) KDE plot (b) Uncertainty Scores (c) Consistency

Fig. 3: Comparison of σ distributions. (a) KDE plot of mean σ values for consis-
tent vs. inconsistent cases; (b) Boxplot for each MRI-triage label combination:
0=positive; 1=negative; (c) Consistency curve showing MRI-triage agreement
(measured as triage label accuracy) at different σ thresholds.

triage label combinations, (0,0), (1,1), (0,1), and (1,0). Notably, cases labeled
as (1,0) demonstrate the highest median σ values, suggesting these are among
the most diagnostically challenging—patients with MRI-confirmed stroke but
no clear outward symptoms—thus requiring further clinical assessment. We also
plot MRI-triage consistency (measured as triage label accuracy) against varying
thresholds of σ in Fig. 3c, where accuracy declines with higher σ values, indicat-
ing a correlation between σ values and uncertainty level for patient cases. These
findings confirm that the learned uncertainty parameter serves as an informative
proxy for case difficulty, offering valuable decision support in stroke diagnosis.

4 Conclusion

This paper presents AUSTIN, an adaptive uncertainty-aware framework for
multimedia-based stroke triage that addresses the fundamental challenge of la-
bel inconsistency in clinical AI systems. By incorporating uncertainty estima-
tion sensitive to clinician-MRI label discrepancies, AUSTIN not only achieves
SoTA performance but also produces interpretable confidence measures that re-
flect real-world diagnostic difficulty. The resulting uncertainty scores serve as
valuable decision-support signals, helping to identify cases that warrant further
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expert review—a particularly important feature in resource-constrained emer-
gency settings. Beyond stroke triage, the uncertainty-aware adaptive training
paradigm holds promise for broader application in other medical domains where
multimodal input may yield conflicting diagnostic labels.
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