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Abstract. Domain adaptation is crucial for deep learning in skin le-
sion analysis because models trained on dermoscopic images often strug-
gle to generalise to clinical images, which exhibit variations in lighting,
resolution, and background conditions. We propose Selective Alignment
Transfer for Domain Adaptation (SAT-DA), a fully supervised frame-
work that significantly reduces this domain gap by dynamically assign-
ing feature importance weights based on statistical moments from both
source and target domains. SAT-DA emphasises domain-invariant fea-
tures and suppresses domain-specific noise to preserve crucial diagnostic
cues. Our multi-loss strategy combines classification, alignment, and di-
versity losses to optimise feature selection and prevent feature collapse
onto a narrow set. SAT-DA was evaluated on six public datasets compris-
ing dermoscopic and clinical images and consistently outperformed state-
of-the-art supervised and unsupervised methods. On Derm7pt-Derm to
Derm7pt-Clinic, SAT-DA achieves 82.46% AUROC, surpassing the strongest
baseline by over 6%. Notably, SAT-DA also maintains high performance
on completely unseen datasets not used as source or target, demonstrat-
ing robust cross-domain generalisation. Overall, these results highlight
SAT-DA’s ability to address practical clinical deployment challenges, of-
fering a reliable, fully supervised solution for cross-domain skin lesion
analysis. The complete implementation of the SAT-DA method is avail-
able at our GitHub repository.

Keywords: Domain Adaptation · Skin Lesion Analysis · Fully Super-
vised Learning.

1 Introduction

Deep learning models have shown remarkable results for skin cancer classifica-
tion, frequently outperforming dermatologists in controlled settings [5]. However,
these advancements have not been fully translated to clinical practice, largely
due to the phenomenon of domain shift. Specifically, models trained on standard-
ised dermoscopic images often struggle to generalise to clinical images captured
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via mobile devices, which exhibit significant variability in lighting conditions,
imaging perspectives, and skin tone representation [2,24,20].

Although unsupervised domain adaptation (UDA) frameworks such as Domain-
Adversarial Neural Networks (DANN) [7], Adversarial Discriminative Domain
Adaptation (ADDA) [23], and Deep CORAL [21] have been proposed to mit-
igate distribution discrepancies, their applicability in medical imaging remains
challenging. These methods rely on unlabeled target domain data and often
struggle to preserve diagnostic class-specific features that are crucial for medi-
cal tasks, potentially compromising model interpretability and clinical reliability
[3,14].

In contrast, fully supervised domain adaptation (SDA) integrates the avail-
ability of labeled target domain data, enabling more effective alignment between
source and target distributions. SDA takes advantage of labeled data in both
domains to guide alignment. It groups features from the same class while fil-
tering out irrelevant noise. This helps preserve diagnostic cues across domains
and improves classification in real-world clinical settings. By using label infor-
mation, SDA ensures class-wise consistency and enhances the structure of the
feature space, which reduces the impact of domain-specific artefacts and sup-
ports more reliable diagnostic performance [16,19,12]. This approach can out-
perform UDA, particularly in high-stakes domains such as oncology, where diag-
nostic accuracy and model reliability are paramount[17,11,1]. Early supervised
approaches aligned feature distributions by minimising class-wise distance mea-
sures or incorporating few labeled target samples [22,17]. For instance, Tzeng et
al. [22] combined a domain confusion loss with soft label matching for partial
supervision, and Motiian et al. [17] introduced contrastive semantic alignment
to handle few-shot targets. However, these methods typically do not address
the significant domain gap between dermoscopic and clinical/mobile skin im-
ages. Clinical images have varied lighting and uncontrolled backgrounds that
produce domain-specific artifacts, unlike the relatively homogeneous conditions
in standard benchmarks such as Office-31 or Office-Home [15,6]. Prior studies on
dermoscopic adaptation mostly focus on biological or technical factors unique to
dermoscopy [2], rather than on the dermoscopic-to-clinical image gap. Carretero
et al. [1] proposed a supervised contrastive learning method to address domain
shifts caused by staining variations in multi-centre histopathological datasets.
However, it differs from those encountered in broader imaging tasks, such as
adapting dermoscopic models to clinical images with variations in resolution
and lighting.

To address this challenge, we propose a fully supervised domain adapta-
tion framework that improves classification on both dermoscopic and clinical
images. Our method uses a dynamic feature selection mechanism based on sta-
tistical moments from both domains to assign feature importance weights. Unlike
purely adversarial [7] or correlation-based methods [21], our approach highlights
domain-invariant features that retain essential diagnostic details while suppress-
ing noise from differences in lighting, resolution, viewpoints, and skin tone. We
further incorporate a diversity loss to maintain a broad range of features, which is



Selective Alignment Transfer for Domain Adaptation in Skin Lesion Analysis 3

Fig. 1. Architecture of SAT-DA. Feature extraction part processes input images from
the source (dermoscopic) and target (clinical) domains using a pretrained model to
extract feature maps. Mean feature vectors are pooled for each domain, and a fea-
ture selector generates importance weights to emphasise shared features and suppress
domain-specific noise. Adjusted feature maps are passed to a classifier for lesion pre-
diction. During training, cross-entropy, feature alignment, and weight diversity losses
are used to ensure effective domain adaptation. In inference, stored weights are applied
for classification.

crucial in medical imaging where even subtle details like irregular lesion borders
can be critical for diagnosis [2]. Our main contributions are as follows:

– Dynamic feature weighting via statistical moments We introduce a
mechanism to learn domain-specific importance weights to emphasise in-
variant features and suppress domain-specific noise, substantially enhancing
alignment across dermoscopic and mobile images.

– Multi-loss strategy to preserve diversity We add a diversity loss along-
side classification and alignment losses to prevent reliance on only a few fea-
tures. This helps capture even small diagnostic cues that are vital in medical
imaging.

– improved cross domain generalisation Our model ensures reliable cross-
domain generalisation, excelling in the target domain and adapting well to
unseen datasets.

2 Methodology

An overview of the proposed network for fully supervised domain adaptation in
skin lesion analysis is illustrated in Figure 1. The network primarily comprises
three parts: 1) in the feature extraction, a pre-trained backbone network is used
to map input images into high-level feature representations; 2) in the feature
selector, the extracted features are fused and processed to compute channel-wise
feature weights; 3) the computed feature weights are applied to both feature
representations and a novel classification loss is optimised to ensure domain-
invariant class label prediction.
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Problem Formulation and Notation: We address the challenge of do-
main shift between two types of skin images: dermoscopic (source) and clinical
(target). We denote the source dataset as Ds = {(xi

s, y
i
s)}

ns
i=1 and the target

dataset as Dt = {(xj
t , y

j
t )}

nt
j=1, where xi

s, x
j
t are input images, and yis, y

j
t are

their corresponding labels. Our goal is to learn a classifier G(·) that performs
well on both domains despite significant variations, such as lighting conditions,
imaging perspectives, and patient skin tones. Unlike adversarial-based methods
(e.g., ADDA [23]) which learn domain-invariant representations via a generator-
discriminator framework, or approaches like Deep CORAL [21] that align second-
order statistics, our method dynamically weighs features while simultaneously
encouraging diversity in the channel-wise feature importance. This is achieved
by jointly optimising a novel classification loss with a distribution alignment loss,
and a diversity-promoting loss.

Feature extraction: Given pairs of source and target images, representa-
tive features hi

s,h
j
t ∈ RB×C×H×W can be extracted using a pretrained feature

extractor F (·) where B is the batch size, C is the number of channels and H
and W are the size of each feature channel. The objective of the feature extrac-
tion part is to obtain high-level feature representations associated with essential
patterns, textures, and structures. It is important to note that our proposed
framework is generic to any modern CNN and not restricted to any particular
type of features. In this paper, we instantiate F (·) as EfficientNet-B2, yielding
C = 1408 feature channels after the final convolutional layer.

Dynamic Feature Selection and Weighting: We apply global average
pooling (GAP) to the convolutional feature maps hi

s,h
j
t and generate spatially

pooled feature vectors f i
s,f

i
t ∈ RB×C . Within each mini-batch, we then compute

the batch mean for each domain so that each image is represented by a C-
dimensional vector:

f̄s =
1

Bs

Bs∑
i=1

f i
s, f̄ t =

1

Bt

Bt∑
j=1

f j
t , (1)

yielding two vectors f̄s, f̄ t ∈ RC . To capture the interaction between these two
domains, we concatenate f̄s and f̄ t to form a 2C-dimensional vector, which is
then passed through a three-layer feed-forward network with ReLU activations.
The final sigmoid layer σ(·) produces a channel-wise feature weight vector w ∈
(0, 1)C :

w = σ
(
W3 ReLU

(
W2 ReLU(W1 [ f̄s, f̄ t ] + b1) + b2

)
+ b3

)
. (2)

Here, W1,W2,W3 and b1, b2, b3 are learnable parameters. We then refine both
source and target features by element-wise multiplication with w:

f̃
i

s = f i
s ⊙w, f̃

j

t = f j
t ⊙w. (3)

Although the weight vector w is derived from the batch-averaged features, we
apply it element-wise to each individual feature map in the batch, enabling
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domain-invariant weighting at the channel level. After weighting, we apply an-
other GAP and feed these refined features into a classifier G(·).

Loss Functions: The output of SAT-DA is the predicted class probabilities.
To optimise the model, we propose a novel loss function comprising following
three components:

i. Classification Loss: Because we have labels for both source and target
domains, we compute cross-entropy losses on both domains:

Lcls =
1

ns

ns∑
i=1

ℓ
(
G(f̃

i

s), y
i
s

)
+

1

nt

nt∑
j=1

ℓ
(
G(f̃

j

t ), y
j
t

)
, (4)

where ℓ(·, ·) denotes the cross-entropy function.
ii. Alignment Loss: To reduce domain discrepancies, we align the weighted

feature representations via

Lalign =
∥∥∥E[f̃s] − E[f̃ t]

∥∥∥2
2
, (5)

which penalises the squared ℓ2 distance between domain means. We facilitate
domain-invariant learning by ensuring f̃s and f̃ t have similar distributions. Un-
like Deep CORAL [21] which aligns second-order statistics (e.g., covariance), we
focus on mean alignment for simplicity and computational efficiency.

iii. Diversity Loss: A key novelty in this paper is to diversify the weighting
vector w to avoid trivial solutions that focus on a narrow subset of features. The
diversity loss prevents the feature selector from relying on limited features and
helps capture important diagnostic cues like irregular borders or heterogeneous
textures. We encourage weight variability through

Ldiverse = − std(w), (6)

where std(·) is the standard deviation of all elements in w. This negative sign
ensures we maximise the standard deviation.

Overall Objective: We combine these three losses into one final training
objective:

L = Lcls + λ1 Lalign + λ2 Ldiverse, (7)

where λ1 and λ2 control the relative importance of alignment and diversity,
respectively.

3 Experimental Results and Discussions

Datasets: We evaluate our method on six publicly available skin lesion datasets,
each containing two classes: melanoma (MEL) and nevus (NEV). Three of these
datasets are dermoscopic (ISIC-2017 [10], ISIC-2018 [4], Derm7pt-Derm [13])
and three are clinical (Derm7pt-Clinic [13], Fitzpatrick17k [9], PAD-UFES-20
[18]). We split the Derm7pt dataset into Derm (D7D) and Clinic (D7C) subsets.
For all datasets, we adopt stratified splits with 20% for validation and 20% for
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Table 1. Overview of the six skin lesion datasets and their two classes.

Dataset Abbrev. Type MEL NEV Train / Val / Test
ISIC 2017 [10] ISIC-17 Derm. 347 2045 0.6 / 0.2 / 0.2
ISIC 2018 [4] ISIC-18 Derm. 1113 6705 0.6 / 0.2 / 0.2
Derm7pt-Derm [13] D7D Derm. 191 475 0.6 / 0.2 / 0.2
Derm7pt-Clinic [13] D7C Clinic 191 475 0.6 / 0.2 / 0.2
Fitzpatrick17k [9] Fitz Clinic 299 140 0.6 / 0.2 / 0.2
PAD-UFES-20 [18] PAD Clinic 52 244 0.6 / 0.2 / 0.2

Table 2. AUROC comparison of SDA, UDA, and SAT-DA, where dermoscopic im-
ages act as the source domain and clinical images the target domain, with additional
evaluation on four unseen datasets. For D7D→D7C, the target domain is D7C and the
unseen datasets are ISIC 2017, ISIC 2018, Fitz, and PAD. For ISIC2017→Fitz, the
target domain is Fitz and the unseen datasets are ISIC 2018, D7C, D7D and PAD. For
ISIC2018→PAD, the target domain is PAD and the unseen datasets are ISIC 2017,
D7D, D7C, and Fitz.

Setting Dataset ISIC 2018 ISIC 2017 PAD Fitz D7D D7C Average
ATDOC [16] D7D→D7C 70.50 ± 0.35 61.73 ± 0.28 54.19 ± 0.14 71.92 ± 0.56 - 75.96 ± 0.18 66.86 ± 0.34
(SDA) ISIC2017→Fitz 80.25 ± 0.22 - 70.20 ± 0.33 71.48 ± 0.19 74.02 ± 0.24 57.76 ± 0.43 72.84 ± 0.30

ISIC2018→PAD - 68.61 ± 0.31 68.94 ± 0.25 69.30 ± 0.29 74.89 ± 0.20 54.56 ± 0.44 67.26 ± 0.31
MCC [12] D7D→D7C 51.40 ± 0.35 53.30 ± 0.21 47.17 ± 0.39 52.72 ± 0.44 - 51.65 ± 0.18 56.83 ± 0.31
(SDA) ISIC2017→Fitz 52.08 ± 0.05 - 76.94 ± 0.41 62.19 ± 0.34 57.49 ± 0.18 55.56 ± 0.39 60.85 ± 0.31

ISIC2018→PAD - 54.74 ± 0.30 47.62 ± 0.27 53.41 ± 0.16 65.70 ± 0.15 59.62 ± 0.08 56.22 ± 0.09
LIC [19] D7D→D7C 78.30 ± 0.05 62.25 ± 0.08 59.46 ± 0.12 74.10 ± 0.01 - 72.30 ± 0.05 69.28 ± 0.03
(SDA) ISIC2017→Fitz 78.08 ± 0.22 - 67.10 ± 0.03 69.27 ± 0.17 75.60 ± 0.19 72.05 ± 0.12 72.42 ± 0.07

ISIC2018→PAD - 71.10 ± 0.23 68.60 ± 0.17 75.68 ± 0.11 71.40 ± 0.21 69.38 ± 0.09 71.23 ± 0.08
DANN [7] D7D→D7C 74.60 ± 0.26 55.10 ± 0.03 61.47 ± 0.22 69.30 ± 0.12 - 72.65 ± 0.31 66.62 ± 0.21
(UDA) ISIC2017→Fitz 82.40 ± 0.08 - 76.45 ± 0.17 72.60 ± 0.19 82.20 ± 0.23 62.54 ± 0.04 75.24 ± 0.16

ISIC2018→PAD - 62.50 ± 0.10 66.30 ± 0.31 69.40 ± 0.42 78.04 ± 0.21 68.50 ± 0.09 68.95 ± 0.26
ADDA [23] D7D→D7C 59.30 ± 0.18 64.70 ± 0.31 46.04 ± 0.23 52.85 ± 0.09 - 66.21 ± 0.04 59.30 ± 0.18
(UDA) ISIC2017→Fitz 63.10 ± 0.11 - 65.25 ± 0.06 46.70 ± 0.03 66.20 ± 0.09 49.50 ± 0.02 58.15 ± 0.07

ISIC2018→PAD - 68.30 ± 0.25 70.60 ± 0.07 67.50 ± 0.12 75.10 ± 0.09 57.20 ± 0.08 67.74 ± 0.14
Deep CORAL [21] D7D→D7C 72.60 ± 0.12 64.22± 0.14 58.50 ± 0.33 74.70 ± 0.25 - 67.10 ± 0.02 67.42 ± 0.19
(UDA) ISIC2017→Fitz 80.40 ± 0.07 - 80.05 ± 0.04 72.15 ± 0.10 80.20 ± 0.24 61.15 ± 0.10 74.79 ± 0.12

ISIC2018→PAD - 70.08 ± 0.04 72.40 ± 0.12 70.30 ± 0.09 73.60 ± 0.11 61.15 ± 0.09 69.51 ± 0.09
SAT-DA D7D→D7C 84.40 ± 0.41 66.53 ± 0.21 65.22 ± 0.19 79.62 ± 0.45 - 82.46 ± 0.56 75.65 ± 0.39
(Ours) ISIC2017→Fitz 82.05 ± 0.22 - 77.77 ± 0.33 72.58 ± 0.19 79.50 ± 0.51 64.50 ± 0.39 75.28 ± 0.35

ISIC2018→PAD - 69.52 ± 0.27 76.68 ± 0.57 76.50 ± 0.06 83.58 ± 0.39 71.51 ± 0.19 75.56 ± 0.33

testing. All images are resized to 288× 288 pixels. For Fitzpatrick17k, we addi-
tionally remove duplicates and non-lesion entries, then apply region-of-interest
cropping before resizing. Table 1 summarises the distribution and abbreviations
used throughout the paper.

Training and Evaluation: Our method is implemented in PyTorch (v2.4.0
with CUDA 12.1) and deployed on an NVIDIA GeForce RTX 3090 (24 GB) GPU.
We use an Adam optimizer with a learning rate of 1×10−4 and set λ1 = 0.1 and
λ2 = 0.01. We benchmark against three supervised models: ATDOC [16], MCC
[12], and LIC [19], as well as three unsupervised models: DANN [7], ADDA [23],
and Deep CORAL [21]. For evaluation, we use AUROC, accuracy and F1 score.

Comparison with other Methods: In Table 2, we present a compara-
tive analysis of our proposed SAT-DA framework against both SDA and UDA
methodologies across multiple domain shifts, utilising AUROC as the evaluation
metric.

Notably, SAT-DA achieves performance that is either competitive with or
surpasses existing state-of-the-art methods. For D7D→D7C, SAT-DA obtains
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82.46 ± 0.56 on the target domain, signifying a significant improvement over the
strongest SDA method, ATDOC (75.96 ± 0.18), and the best UDA approach,
DANN (72.65 ± 0.31). In ISIC2018→PAD, SAT-DA reaches 76.68 ± 0.57, again
indicating a significant improvement over all baselines. Performance margins are
closer in ISIC2017→Fitz, where SAT-DA achieves 72.58 ± 0.19, yet its aver-
age performance on unseen datasets remains higher than competing methods.
We also conducted statistical tests to determine the significance of the results.
Since we evaluated each model multiple times on different unseen datasets, we
generated a distribution of results for each method. A one-way ANOVA test con-
ducted on these distributions indicated a statistically significant difference be-
tween models (p < 0.05). Further pairwise comparisons using Tukey’s HSD test
confirmed that SAT-DA significantly performed better than the baseline mod-
els. This further highlights the limitations of current SDA methods, which suffer
from domain dependency, and the instability of UDA methods, which fail to
adapt consistently across different datasets. We further evaluated each method’s
ability to reduce domain disparity by calculating the Domain Shift Cover(DSC),
as shown in Table 4. DSC quantifies the extent to which the performance gap
is bridged when moving from the base model (trained solely on dermoscopic
images) to DA models with clinical images. Our SAT-DA achieves the highest
DSC across AUROC, Accuracy and F1 Score, demonstrating its superior ability
to facilitate robust feature alignment and effective knowledge transfer across do-
mains. By contrast, certain UDA methods (e.g. ADDA) show negative DSC in
specific metrics, suggesting instability in purely label-free adaptation. While ex-
isting SDA methods benefit from target labels, they remain inferior to SAT-DA
in effectively mitigating domain shifts comprehensively.

Table 3. Ablation study of SAT-DA: AUROC results from D7D (source) to D7C
(target) and evaluation on four unseen datasets (ISIC 2018, ISIC 2017, PAD, Fitz).
F.S: Feature selection. Ldiverse: diversity loss. Lalign: alignment loss.

Method ISIC 2018 ISIC 2017 PAD Fitz D7C Average
W/O (F.S & Ldiverse & Lalign) 48.46 ± 0.25 47.50 ± 0.37 52.70 ± 0.23 52.00 ± 0.17 55.59 ± 0.46 50.93 ± 0.31
W/O (F.S & Ldiverse ) 54.46 ± 0.39 52.30 ± 0.26 62.20 ± 0.07 55.58 ± 0.14 59.60 ± 0.48 56.83 ± 0.31
SAT-DA (Full Application) 84.40 ± 0.41 66.53 ± 0.21 65.22 ± 0.19 79.62 ± 0.45 82.46 ± 0.56 75.65 ± 0.39
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Table 4. Domain Shift Covered across different settings on the D7D → D7C dataset.
Base model (EfficientNet B2) trained on dermoscopic images and evaluated on clini-
cal images. The Combined setting blends dermoscopic and clinical images, split into
training, validation, and test sets. The Domain Shift Cover (DSC) is computed as
DSC(%) = DA Model Value−Base Value

Target Value−Base Value × 100; Target Value=100 [8].

Setting AUROC Accuracy F1 Score
Base 68.26 67.81 07.38

Absolute DSC (%) Absolute DSC (%) Absolute DSC (%)
Combined 73.50 16.55 68.65 2.62 58.45 55.01
ATDOC [16] (SDA) 70.50 7.04 73.44 17.66 35.38 30.23
MCC [12] (SDA) 51.40 -53.12 68.12 0.96 0.02 -7.95
LIC [19] (SDA) 72.35 12.89 71.88 12.64 24.28 18.25
DANN [7] (UDA) 74.60 19.88 70.63 8.76 54.30 50.70
ADDA [23] (UDA) 59.30 -28.31 60.30 -23.33 47.16 42.95
Deep CORAL [21] (UDA) 67.70 -1.76 63.12 -14.57 40.34 35.59
SAT-DA (Ours) 82.46 44.85 76.92 28.30 60.52 57.37

Ablation Study: Table 3 examines the impact of removing individual com-
ponents—feature selection, diversity loss, and alignment loss—on the perfor-
mance of SAT-DA. The evaluation is conducted in the context of domain adap-
tation from D7D (source) to D7C (target) and is further validated on four previ-
ously unseen datasets. Without any component, the model barely reaches 50.93%
average AUROC, reflecting poor cross-domain adaptation. Adding alignment
loss alone raises this to 56.83%, indicating some benefit from reducing distribu-
tion gaps but still insufficient for challenging domain shifts. In contrast, the full
SAT-DA framework achieves a substantially higher average AUROC of 75.65%,
highlighting the critical role of integrating channel-wise feature selection and
diversity regularisation with alignment loss.

R
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E
V

BASE SAT-DAUDA-DANNSDA-ATDOC

Fig. 2. Visual comparisons on two example images. From left to right: raw clinical lesion
image, Grad-CAM heatmaps for four models: Base (no adaptation), SDA (ATDOC),
UDA (DANN), and our SAT-DA. The heatmaps highlight each model’s attention over
the lesion; SAT-DA shows tighter focus on the malignant region.
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Qualitative Analysis: We generate Grad-CAM visualisations for the entire
D7C test set and observed that, in most cases, our model exhibites superior
localisation of lesion areas than other models. Figure 2 presents example images
demonstrating that SAT-DA focuses more precisely on the malignant regions,
whereas the other models tend to produce broader or misplaced activations.

Limitations: Our model struggles with large domain gaps, particularly with
Fitzpatrick data, where variations in image acquisition angles significantly differ
from the training distribution, even after ROI preprocessing. This issue is also
evident in Grad-CAM visualisations on the D7C test set, where the model some-
times fails to accurately localise the lesion when the image is captured from a
significantly different angle.

4 Conclusion

We propose a selective alignment transfer approach to address domain shift in
skin lesion analysis. This method focuses on the most discriminative features,
thereby preserving crucial clinical information while reducing the influence of
confounding factors. Our results demonstrate that strategically guided domain
adaptation improves lesion classification performance across diverse datasets.
Our approach enhances resilience and accuracy, making it more suitable for
real-world clinical applications.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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