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Abstract. Developing robust machine learning algorithms is of utmost
importance for their applications to biomedical imaging applications.
This issue is non-trivial, as networks are generally trained with datasets
taken from relatively homogeneous samples dominated by statistically
more probable disease classes, leading to unbalanced class distributions.
One possible solution is to resolve the intrinsic biases towards certain
dominating classes in the training datasets through more data collection
with a more diverse sample, which is often prohibitively expensive. An-
other solution is to directly implement established uncertainty estimation
measures for more robust predictions, which are nevertheless computa-
tionally demanding and insensitive to class imbalance. To address this
issue, we propose a novel class-aware and uncertainty-aware pseudocore-
set framework consisting of the following components: 1) An efficient
framework with last layer Laplacian approximation 2) Class-aware cali-
bration with error-based regularization, and 3) a Wasserstein distance-
based regularization which explicitly imposes uncertainty-awareness. We
evaluate our method for In-Distribution calibration, Out-of-Distribution
inference, and class balance evaluations in two public skin cancer datasets
taken from samples from different geographical location with differing
skin colors. Our method outperforms various baseline uncertainty quan-
tification and Bayesian pseudocoreset methods.
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1 Introduction

The recent success of large deep learning models led to a substantial increase
in training and deployments of models in various applications in clinical prac-
tice [30]. However, the expected benefits of deploying such models are severely
hindered by two major limiting factors: the required number of labeled training
data and the unavoidable class imbalance of the samples. Due to such limitations,
deep learning models are prone to overfit specifically to the limited attributes
found within the dominating subclasses, subsequently leading to overconfident,
erroneous predictions. Failure to generalize to data distribution shifts can po-
tentially be fatal for safety-critical applications such as medical imaging.
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One medical imaging application in which the aforementioned variances oc-
cur is the automated detection of skin cancers, a globally relevant disease where
approximately 14 million cases of new cancer cases are detected annually, 9.6
million of which lead to death [23]. In response to the pressing global mortality
figures, communities worldwide strive to streamline the screening and detec-
tion of skin cancers. One possible solution is to adopt automated detection with
handheld devices [22]. Skin cancers develop primarily on the outermost epider-
mis layer, which renders them visible to the naked eye. However, their morpho-
logical features may vary due to differing skin colors, skin textures, and pre-
existing confounding skin issues. These confounding features, while seemingly
trivial for humans to distinguish, might easily be ignored by trained neural net-
works [3,13,28,1]. Moreover, samples from healthy patients or more common vari-
ants of skin lesions are more readily obtainable from the population than other
variants, leading to class imbalances within available training data. The machine
learning community has proposed various uncertainty estimation solutions to al-
leviate the lingering robustness problems of deep learning models. Methods such
as Deep ensembles [18], MC-Dropout [10], and Bayesian neural networks [24,2,29]
are prominent approaches that are intended to improve the in-distribution cal-
ibration and out-of-distribution performance across various datasets. However,
often the computational demands for training and inference of these methods
render lightweight, real-life applications infeasible as they require multiple train-
ings and inferences of modified networks with larger parameter counts. Recent
works on Bayesian pseudocoresets highlight the possibility of condensing datasets
into synthetic datasets (pseudocoresets) for lightweight uncertainty-estimation
[16,17,27]. Nevertheless, these methods focus solely on networks without consid-
ering the potential class imbalance of the training data [15], with performances
recorded on class-balanced natural image datasets such as CIFAR100 or Im-
ageNet. Given the class imbalance in medical image datasets, we propose to
perform a class-balanced pseudocoreset framework that minimizes the training
and inference cost of a neural network’s uncertainty estimation. This leads us
to introduce a novel class- and uncertainty-aware Last Layer Laplacian Pseudo-
coreset (LLLP) framework with the following contributions: (1) We propose
a pseudocoreset construction framework with neural networks equipped with a
stochastic Laplacian last layer. By restricting the number of images per class
and introducing explicit class-aware regularization terms, we ensure a compact
yet balanced dataset that streamlines the training and inference of last-layer
Laplacian neural networks. (2) We introduce an uncertainty-aware calibration
regularization term by explicitly penalizing calibration errors incurred from the
training process. This term guarantees that the pseudocoresets are not solely op-
timized on their in-distribution accuracy but also on their calibration quality. (3)
We incorporate a Wasserstein-2 distance-aware divergence regularization term
to minimize the divergence between the Laplace approximated posteriors ob-
tained from the pseudocoresets and the original dataset. This term ensures that
the improved uncertainty-estimation performance from the original dataset is
transferred similarly to the pseudocoresets. (4) We conduct in-distribution (ID)
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and out-of-distribution (OOD) inference experiments, as well as a class balance
evaluation to demonstrate the benefit of our method in comparison to the other
baseline methods.

2 Method

The primary aim of Bayesian pseudocoresets (BPC) is to extract synthetic, con-
densed datasets for more efficient training and inference of Bayesian neural net-
works (BNN) [21,16], with the main training objective of aligning the uncer-
tainty estimation performance of the networks on the pseudocoresets to that
on the original dataset. We denote the original, full dataset F with the image
samples x = {xi, x2, ..., x|F |} and their corresponding labels y = {yi, y2, ..., y|F |},
and the pseudocoreset C with the synthetic image samples u = {ui, u2, ..., u|C|}
and labels v = {vi, v2, ..., v|C|} such that |F | >> |C|. Consider the parameters θ
of a probabilistic encoder π. The optimal pseudocoreset C∗ is obtained by min-
imizing the divergence between πF , the posterior of the parameters conditioned
to F , and πC , the posterior of the parameters conditioned to C:

C∗ = argmin
C

D (πF |πC) , (1)

with the posterior terms computed as follows:

πF =
1

Z(x)
exp

 |F |∑
i=1

log π(yi|xi, θ)

π0(θ),

πC =
1

Z(u)
exp

 |C|∑
i=1

log π(vi|ui, θ)

π0(θ),

(2)

where π0(θ) is the parameters’ prior and Z(x) is the margin likelihood term.
As Z(x) =

∫ x

0
π0(θ) exp

(∑|F |
i=1 log π(yi|xi, θ)

)
dθ is intractable, it poses a signif-

icant computational overload, which is why implementations had been limited
to simpler, lower-dimensional data domains so far.

2.1 Efficient, Tractable Pseudocoreset Optimization

The existing purely Bayesian pseudocoreset (BPC) frameworks necessitate per-
forming computationally expensive Markov Chain Monte Carlo(MCMC) sam-
pling on the BNNs output to approximate the posteriors required for the syn-
thetic dataset generation optimization [16]. To mitigate this, we utilize neu-
ral networks with last-layer Laplacian Approximation to compute the poste-
riors required for the optimization [7]. The last layer Laplacian approxima-
tion allows a scalable and efficient approximation of the posteriors as Gaus-
sian distributions N of mean θ∗, which are the maximum-a-posteriori (MAP)
weights, and the variance term Σ [7]. Following the notations used previously
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in Eq. 2, the Laplacian approximation of the posterior is πF ≈ N(θ∗F , ΣF ),

where ΣF =
(
∇2

θL(D; θ)|θ∗
F

)−1 is the inverse of the Hessian matrix of the loss
computed at MAP. Therefore, Laplace approximations can be performed after
training a normal deterministic neural network without compute-heavy prob-
abilistic training or inferences that are otherwise required in other uncertainty
estimation methods. With Laplace approximation, we can consider only the last-
layer weights of a pre-trained network as probabilistic and perform the appropri-
ate posterior update. Recent works have demonstrated that restricting stochas-
ticity into the last layer of a neural network sufficiently delivers competitive
uncertainty-estimation capability [8,7,26].

With the Laplace-approximated posteriors, we can perform the divergence
minimization operation from Eq. 1 given appropriate divergence measures. We
choose the 2-Wasserstein distance[9,25], which possesses a tractable form for
Gaussian distributions.

D (πF |πC) =W 2
2 (πF , πC) =

∥∥θ∗F −θ∗C
∥∥2+Tr(ΣF +ΣC−2(Σ

1/2
F ΣFΣ

1/2
C )1/2).

We further streamline the optimization procedure by considering a combined
stochastic and deterministic approach. Prior BPC methods [16,17,27] generally
adapt the trajectory matching (TM) framework [5] as a basis for the optimization
objective in Eq. 1, particularly to accommodate the computationally expensive
purely BNN base encoders. Trajectory matching is a dataset condensation frame-
work optimized by aligning the training trajectories of networks on the original
dataset and the condensed dataset. However, trajectory matching necessitates
pre-training several expert teacher networks as checkpoints for training trajec-
tories, which in combination with the purely Bayesian formulation, results in
an overall expensive optimization and sampling inferences. Here, we adopt a
combination of the stochastic Laplacian optimization component with a more
efficient, distribution-matching optimization [31] with a Maximum Mean Dis-
crepancy (MMD)-based objective[11],

LD(F,C) = Eθ∼Pθ

∣∣∣∣∣∣ 1

|F |

|F |∑
i=1

ψθ(xi)−
1

|C|

|C|∑
j=1

ψθ(vj)

∣∣∣∣∣∣
2

, (3)

where ψ is the feature embedding function of the input samples. The deter-
ministic term LD encourages the minimization of the discrepancy between fea-
tures of the original dataset and the pseudocoresets without pre-training multiple
expert networks.

2.2 Dual Class-Aware Regularizations

Furthermore, we also introduce a dual class-aware distribution regularization
term, taking into account both the predictive performance and calibration ca-
pability of the network for the different classes. Medical image datasets gener-
ally exhibit class imbalance, with healthy or common classes outweighing less
commonly occurring disease classes. Consequently, classical data condensation
methods might lead to a more unbalanced condensed dataset, as the diversity
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of features of each class in the original dataset is further reduced to a mere
number of samples per class in the condensed dataset. We use the cross-entropy
loss-based class-aware features balancing regularization term LACE [32] with an
additional classification calibration error term LECE , thereby encouraging pseu-
docoresets with balanced features representation and calibration capability of
the different classes, denoted as follows,

LACE = AccϕLCE(C) + LECE(C), (4)

where ϕ denotes a sampled model where accuracy (Acc), cross-entropy loss
LCE , and expected calibration error are evaluated with real data.

2.3 Overall loss function and framework

The optimal pseudocoreset is determined by minimizing the combined loss func-
tions,

C∗ = argmin
C

(D (πF |πC) + LD(F,C) + λACELACE(C)). (5)

The combined objective encourages extracting pseudocoresets with a more
efficient predictive and uncertainty-estimation capability employing Laplace ap-
proximation while considering the class imbalance in the data.

3 Experimental Settings

Training Parameters. We conduct all our experiments with the ConvNet ar-
chitecture, which is consistently used in prior BPC and dataset condensation
works. We utilize the recommended training hyperparameters for DM [32] and
Hessian optimization parameters for Laplace Approximation [7]. The training
images undergo the default Differentiable Siamese Augmentation (DSA) proce-
dure consisting of color jitters, flips, crops, cutouts, scaling, and rotation. We
set the regularization term λACE to 0.1.
Data. We train and construct pseudocoresets (PC) with the ISIC2019 skin lesion
dataset [6]. ISIC2019 consists of 8 classes, with some class categories containing
significantly more samples than others, thus showcasing a clear class imbalance.
For OOD and class balance evaluation, we perform inference on the ASAN skin
lesion dataset with 12 classes [12]. The ASAN skin dataset is sampled from
a population of darker skin color in contrast to the ISIC2019 dataset, where
samples are taken from a population with the majority having lighter skin color.
Evaluation Metrics. We consider predictive accuracy to assess the predic-
tive performance of the PC. We also report on the following metrics for cal-
ibration, OOD performance, and class balance evaluations. NLL ↓: Negative
log-likelihood between the prediction logits and the ground truth labels, with
lower values indicating a better calibration performance. ECE ↓ : Expected cal-
ibration error measures how well aligned the model’s confidence to true positive
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predictions across various accuracy bins. Lower values signify a better alignment.
OOD-AUROC ↑ : OOD Area Under Operating Curve gauges the model’s abil-
ity to distinguish between positive (ID) and negative classes (OOD), with higher
values signifying better OOD performance. BACC ↑ : Balanced accuracy mea-
sure, which takes into account of unbalanced class samples [4]. F1 ↑ : F1 measure
across various classes. GM ↑ : Geometric mean of recalls across various classes.
Compared Methods. For in-distribution and OOD evaluations, we compare
our method with 3 previously developed BPC methods (BPC-F, BPC-W, and
BPC-R) and the deterministic framework DM without and with additional
uncertainty estimation baselines, namely Deep Ensembles, MC-Dropout, and
Spectral-normalized Neural Gaussian Process(SNGP) [19].

4 Results and Discussions

In-Distribution (ID) and Out-of-Distribution Experiments. For the ID
and OOD analysis, we first extracted PC with 1,10, and 20 instances per class
(ipcs). We trained ConvNets with the extracted PC for 200 epochs and analyzed
their corresponding inference performance on the test datasets. For uncertainty
estimation baselines, we trained an ensemble of k = 10 and MC-Dropout with a
dropout rate of 0.1. The results are summarized in Table 1. The explicit Bayesian
optimization of the BPCs results in improved calibrations at the cost of dimin-
ished predictive and OOD inference. Applying dropouts and SNGP training to
deterministic coresets results in strongly diminished performances, highlighting
the complexity of performing classic uncertainty estimation methods in small
data domains. Our method with combined stochastic and deterministic terms,
showcases a balanced predictive, calibration, and OOD inference.
Class Balance Experiments. We trained ConvNets with PC extracted with
10 ipcs and evaluated the class imbalance performance with the best performing
methods from the previous experiments. The findings summarized in 2 reveal in
conjunction with the OOD experiment results, that the BPCs and uncertainty
estimation methods potentially suffer from overfitting to the dominant classes,
especially for smaller medical datasets with less diversity of features. Adopting
the class-aware regularization terms facilitates balanced class sampling for an ef-
fective deterministic (predictive) and stochastic (calibration, OOD) optimization
of the PC.
Qualitative Analysis. We visually compare the generated PC for both BPC
and LLLP shown in Figure 1. BPC displays less diverse, artificial image features,
while our method results in compact datasets of more diverse and more realistic
features. While BPC performs well with natural image datasets with balanced
class samples and diverse features, its potential is limited when used on smaller,
more imbalanced medical image datasets. We further emphasize the importance
of non-Bayesian optimization terms and class-balancing terms for PC generations
in such domains.
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Table 1: In-distribution calibration and OOD experiment results for the differ-
ing BPCs and uncertainty estimation methods. The networks are trained with
generated PC with 3 different instances per classes(ipcs), with best performing
metrics indicated in bold.

Method ipc Acc. NLL(↓) ECE(↓) AUROC(↑)

BPC-fKL
1 0.305±0.013 2.100±0.030 0.355±0.008 0.617±0.018

10 0.448±0.010 1.937±0.009 0.241±0.002 0.625±0.006

20 0.479±0.007 1.825±0.008 0.220±0.003 0.656±0.004

BPC-rKL
1 0.298±0.015 2.210±0.026 0.371±0.010 0.609±0.023

10 0.443±0.013 2.054±0.010 0.272±0.001 0.621±0.004

20 0.475±0.005 1.941±0.005 0.237±0.002 0.648±0.001

DM
1 0.327±0.024 2.328±0.023 0.420±0.035 0.613±0.015

10 0.477±0.006 2.144±0.005 0.352±0.002 0.630±0.003

20 0.510±0.003 1.986±0.002 0.259±0.001 0.665±0.001

DM-Ensembles
1 0.320±0.015 2.193±0.017 0.360±0.012 0.648±0.003

10 0.472±0.005 2.006±0.005 0.239±0.001 0.667±0.002

20 0.501±0.002 1.877±0.003 0.218±0.001 0.702±0.001

DM-MC Dropout
1 0.157±0.016 2.257±0.031 0.408±0.022 0.622±0.008

10 0.435±0.008 2.167±0.012 0.339±0.007 0.638±0.007

20 0.487±0.007 1.979±0.005 0.256±0.005 0.672±0.004

DM-SNGP
1 0.113±0.028 2.401±0.033 0.405±0.040 0.631±0.010

10 0.254±0.014 2.208±0.027 0.389±0.011 0.651±0.013

20 0.386±0.008 2.050±0.012 0.283±0.004 0.678±0.006

LLLP(ours)
1 0.332±0.016 2.017±0.026 0.359±0.006 0.662±0.007

10 0.487±0.008 1.862±0.011 0.225±0.001 0.680±0.005

20 0.507±0.004 1.760±0.005 0.210±0.002 0.731±0.002

SCC

VASC

DF

BKL

AK

BCC

NV

MEL

Class:

(a) BPC (b) LLLP (ours)

Fig. 1: Generated PC for for ipc=10. Rows correspond to the classes SCC: Squa-
mous Cell Carcinoma; VASC: Vascular Lesion; DF: Dermatofibroma; BKL:
Benign Keratosis-Like Lesion; AK: Actinic Keratosis; BCC: Basal Cell Carci-
noma; NV: Nevus; MEL: Melanoma.
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Table 2: Class imbalance experiments results for the various baselines and our
method. Experiments were run with ipc of 10. Best performing metrics are in-
dicated in bold.

BPC-fKL BPC-rKL DM DM-Ensembles LLLP(ours)

Bal.Acc. (↑) 0.253±0.002 0.230±0.003 0.386±0.002 0.383±0.001 0.401±0.001

Macro F1(↑) 0.207±0.001 0.193±0.002 0.285±0.002 0.282±0.001 0.292±0.002

GM(↑) 0.469±0.002 0.432±0.001 0.529±0.003 0.520±0.002 0.573±0.001

Ablation study. We investigated the effect of each component in our method,
namely Last-Layer Laplace (LL), its corresponding regularization component
(LL-R), and the class-aware calibration regularization component(ACE-R) to the
balanced accuracy, calibration error, and OOD inference. Our finding, summa-
rized in Table 3, highlight the contribution of each component to class-balanced,
robust inference. For cross architecture generalization experiments summarized
in Table 4, we extracted the PC with ConvNet and performed in-distribution
inference with ConvNet, AlexNet, and ResNet-18. Table 4 shows that LLLP
delivers generalize well through architectures.

Table 3: LLLP component ablations.
LL LL-R ACE-R BAcc.(↑) ECE (↓) OOD(↑)

- - - 0.285 0.352 0.630
✓ - - 0.285 0.280 0.655
✓ ✓ - 0.243 0.291 0.653
✓ - ✓ 0.246 0.257 0.661
✓ ✓ ✓ 0.292 0.225 0.680

Table 4: Accuracy Cross archi-
tecture generalization.

BPC-f BPC-r LLLP

ConvNet 0.448 0.436 0.487
AlexNet 0.385 0.359 0.402

ResNet-18 0.363 0.344 0.380

5 Conclusion

We introduced an efficient pseudocoreset framework consisting of stochastic
last-layer Laplace approximations to induce distance-awareness and a determin-
istic MMD-based pseudocoreset optimization term to facilitate faster pseudo-
coreset generation with satisfactory predictive performances. We also imbued a
class-aware calibration regularization term to promote class-balanced learning.
Our findings from the downstream performance in safety-critical medical do-
mains with limited training samples and class imbalance reveal that our frame-
work promotes robust calibration, OOD inference, and a more class-balanced
performance. For our future works, we will explore further strategies to im-
plement fairness measures into our pseudocoreset generation and investigate
the correlation between uncertainty estimation and fairness. We would also
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like to perform more robust uncertainty quantification and out-of-distribution
evaluations as highlighted in [14], with other metrics such as KDE-ECE [20]..
Our method implementation can be found in the following repository https:
//github.com/fx-erick/LLLP.
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