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Abstract. Counterfactuals in medical imaging are synthetic representa-
tions of how an individual’s medical image might appear under alternative,
typically unobservable conditions, which have the potential to address
data limitations and enhance interpretability. However, counterfactual
images, which can be generated by causal generative models (CGMs), are
inherently hypothetical—raising questions of how to properly validate
that they are realistic and accurately reflect the intended modifications.
A common approach for quantitatively evaluating CGM-generated coun-
terfactuals involves using a discriminative model as a ‘pseudo-oracle’ to
assess whether interventions on specific variables are effective. However,
this method is not well-suited for in-depth error identification and analysis
of CGMs. To address this limitation, we propose to leverage synthetic,
‘ground truth’ counterfactual datasets as a novel approach for debugging
and evaluating CGMs. These synthetic datasets enable the computation
of global performance metrics and precise localization of CGM failure
modes. To further quantify failures, we introduce a novel metric, the
Triangulation of Effectiveness and Amplification (TEA), which precisely
quantifies the effectiveness of target variable interventions and the ad-
ditional amplification of unintended effects. We test and validate our
evaluation framework on two state-of-the-art CGMs where the results
demonstrate the utility of synthetic datasets in identifying failure modes
of CGMs, and highlight the potential of the proposed TEA metric as
a robust tool for evaluation of their performance. Code and data are
available at https://github.com/ucalgary-miplab/TEA.
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1 Introduction

Counterfactual images in medical imaging are synthetic images that aim to
represent how an individual’s acquired image might appear under alternative,
hypothetical conditions. For instance, plausible counterfactual images could be
generated by asking an artificial intelligence (AI) system, “What would the
brain look like if the subject were 75 years old?”. The utility of counterfactual
images in medicine is multifaceted. They can, for example, serve as powerful
diagnostic and prognostic tools, helping medical professionals visualize and
predict disease progression and treatment effects on an individual level [13,2].
In research, they can augment training datasets, addressing data scarcity and
imbalance [20]. While any class of (conditional) generative model can be utilized
to generate counterfactual images, causal generative models (CGMs) provide the
most theoretically grounded way of doing so. Several causal models in medical
imaging [7,18,10,17] have successfully addressed all levels of Pearl’s ladder of
causation [8] and are capable of generating theoretically sound counterfactuals.

However, since counterfactuals are hypothetical by definition (i.e., that alter-
native version of the image usually does not exist in the real world), how can
developers validate that their CGMs are capable of producing images that are
realistic and accurately reflect the targeted changes based on the original image?
Currently, when evaluating counterfactuals generated by CGMs, a common ap-
proach is to use an additional discriminative model as a ‘pseudo-oracle’ to assess
whether a variable was effectively intervened on [5]. For instance, a classifier can
be trained to predict whether a CGM properly removed attributes associated
with Alzheimer’s disease from an individual’s brain magnetic resonance imaging
(MRI) scan when producing a counterfactual showing what they would look like
if they were healthy.

Another important consideration for CGM developers is to ensure that their
models only modify the targeted aspects of the original image, without making un-
intended changes. For example, when generating a counterfactual for Alzheimer’s
disease, it is important to verify that the CGM does not unintentionally alter
other attributes, such as making a male’s brain MRI appear female. Prior works
to quantify such unwanted modifications proposed distance-based metrics, such as
prozimity [6] and minimality [12,4]. Briefly described, these metrics measure the
distance between the generated counterfactual and the original image, assuming
that a good counterfactual should closely resemble the original image while only
modifying the target variable. However, since these methods do not account for
the true extent or direction of targeted changes, they often favour counterfactuals
that remain largely unchanged. Again, a pseudo-oracle can also be used to evalu-
ate whether a CGM amplified attributes unrelated to the intended target [19].
For example, a classifier model can help to determine if the CGM unintentionally
modified the sex attribute.
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Therefore, pseudo-oracles are currently one of the most practical approaches
for assessing both the effectiveness and amplification of CGMs on real-world data.
However, their utility for troubleshooting and debugging during development
and improvement of CGMs is limited. A major drawback of this approach is
shortcut learning, where the pseudo-oracle may rely on spurious correlations
during training, undermining its efficacy as an evaluation technique. Furthermore,
these methods reduce the whole complex problem to a single scalar global output
metric: a performance value corresponding to whether the pseudo-oracle believed
that an image was properly intervened on. This single, global value may not be
useful for developers trying to identify why their CGM does not produce reliable
counterfactual images and where the problem areas of those images may be.

Instead, we argue that the flexible and tractable nature of synthetic data
is much better suited for in-depth error identification and analysis of CGMs.
Within this context, MorphoMNIST [1] is commonly used as a first tool for
validating CGMs, but has limited utility if the ultimate goal is to produce
medical images, which are much more complex. Alternatively, an established
tool for generating synthetic, realistic brain MRI data is the Simulated Bias
in Artificial Medical Images (SimBA) framework [16,15], which was originally
proposed to study the impacts of medical imaging ‘biases’ on neuroimaging deep
learning pipelines. Crucially, SimBA enables the generation of counterfactual
datasets in which a particular synthetic but realistic subject can be produced with
and without precisely specified, spatially localized morphological effects. This
synthetic counterfactual setup has, for example, facilitated rigorous evaluation
into the impact that a specific effect within a medical image would have on
discriminative model performance, explainability, and learned features [15,14].

In this work, we propose a novel use of the synthetic medical image counter-
factuals generated with SimBA as a tool for the development and improvement
of CGMs. We demontrate how access to these exact ground truth counterfactual
images enables the computation of a quantitative global metric that informs
CGM performance, as well as exact spatial localization of failure modes. To
better quantify these failure modes, we also propose a new metric, triangula-
tion of effectiveness and amplification (TEA), which precisely quantifies the
extent to which target variables are effectively intervened on and unwanted
effects are amplified or changed. We test our proposed framework using SimBA-
generated neuroimaging data on two generative models capable of generating
causally-grounded counterfactuals: HVAE [10] and MACAW [17].

2 Methods

2.1 Ground truth counterfactuals with SimBA

The core idea of the SImBA framework [16,15] is that medical image-specific effects
(e.g., morphological or intensity variations in brain MRI) can be systematically
integrated into generated images to allow for exact traceability in how such effects
manifest within deep learning models. A key component of SimBA is that paired
counterfactual dataset scenarios are generated that enable a direct comparison of
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the impact of specific effects to baseline scenarios. In this work, we propose to use
these ground truth counterfactual datasets as a strategy to evaluate the ability
of CGMs to generate medical image counterfactuals. In this context, SimBA
synthetic images are generated via augmentation of a template image (e.g., a
brain MRI atlas) with global subject-specific morphological variations (‘subject
effects’), localized morphological effects distinguishing classes for a downstream
task (‘task effects’), and additional specific morphology or intensity-based effects
under study (‘target effects’); where target effects are what we aim to causally
intervene on. Therefore, variable intervention with a CGM aims to generate
counterfactual images that only differ in the absence or presence of the target
effect, while keeping the remaining image attributes (subject and task effects)
constant.

Data Generation and Training Evaluation of Counterfactuals
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Fig. 1. Given a synthetic image x without the target effect, the ground truth coun-
terfactual with the target effect, @, is obtained via SimBA, and the CGM generates a
counterfactual image & with the target effect. In image space, the vector Z represents
the ground truth intervention, while Z represents the CGM intervention, and their
difference shows failure modes of the CGM. This setup can also apply to the removal of
a target effect using a CGM.

Consider a synthetic image @, which does not contain the target effect. The
task of the CGM is then to generate the counterfactual image ® in which the
target effect is added. Using SimBA, we also have access to the ground truth
counterfactual which does contain the target effect, T (Fig. 1A). In the image
space, the difference vector Z between images © and T represents the ground
truth intervention on the target effect, while the vector z between & and T
represents the CGM intervention on the target effect. Moreover, the difference
between Z and z reflects the extent to which the CGM failed to generate the
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intended counterfactual . We assume that all unwanted changes are orthogonal
to the intended direction of change (Z) in the image space. Intuitively, an ideal
method would transform the image from one with the target effect to one without
it (ground truth), strictly along this vector. Any deviation from this direction
indicates an undesired amplification. Both Z and z can be represented visually
in difference maps of pixel values, or quantitatively, for example by calculating
their L2 norms. In this pixel value difference map, the non-zero regions indicate
where  needs to be adjusted to match the ideal ground truth counterfactual &
(Fig. 1B). Note that this setup can be applied to both addition and removal of a
target effect.

2.2 Triangulation of effectiveness and amplification (TEA)

z and z provide both a global quantitative metric (L? norm) and a visual
representation (pixel-level difference maps) of the failures of a CGM in producing
an intended counterfactual. However, it is also highly useful for developers of
CGMs to identify what those specific failure modes are. More precisely, to
what extent did a CGM properly intervene on the target effect (effectiveness),
and undesirably introduce other effects to the image (attribute amplification)?
Utilizing this ground truth counterfactual setup, we propose a novel metric
that represents these two quantitative properties, referred to as TEA. Here,
effectiveness (E) quantifies how well 2 aligns with Z, where amplification (A)
measures the orthogonal distance from Z to z (see Fig. 1C):

A=1/I213 - (ElI=)?

DO N

=

where - represents the dot product of the vectors.

2.3 Experimental setup

Data used in this work was generated with SimBA following the process detailed
in [15]. An axial slice was extracted from each of the 3D brain MRI scans of
2,002 simulated subjects. The final size of the extracted slice was 192 x 192 to
adhere to the existing CGM architectures used in this work. In these datasets,
the task effect and the target effect were local morphological deformations in the
left insular cortex and the right postcentral gyrus, respectively. Global subject
effects were sampled from the normal distribution A(0, 1) using the subject effect
model (as in [15]). Paired ground truth counterfactual datasets were generated:
one that did not contain the target effect (i.e., @), and one that did contain the
target effect (i.e., T). Both & and & had identical subject and task effects, and
underwent the same splits of 50%/25%/25% for training, validation, and testing
of the CGMs.

MACAW [17] encodes a structural causal model (SCM) into a normalizing
flow, incorporating causal domain knowledge by masking connections to preserve
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the dependencies between parent and child nodes. After applying the masking,
the model is trained using maximum likelihood estimation to learn the joint
probability distribution. First, the predefined SCM, which includes independent
target and task variables that influence the image, was encoded into the model
and trained until convergence, and the version with the best validation loss
(negative likelihood loss) was selected. The following hyperparameters achieved
the best validation loss: learning rate = 1 x 1073, weight decay = 5 x 1075, and
number of layers = 4. Finally, counterfactual images were generated using the
best model to achieve target effects; these images are referred to as Zps.

HVAE [10] extends classical variational autoencoders (VAEs) by introducing
a group of VAEs with their respective latent variables. In this approach, each latent
distribution is trained conditioned on the their causal parents by maximaxing
the evidence lower bound (ELBO) on the marginal log-likelihood of the data to
learn its distribution. The same SCM used for MACAW was enocoded in the
model, which was trained until convergence, with the following hyperparameters
achieving the best validation loss: learning rate = 1 x 1073, weight decay =
5 x 1072, using the originally proposed architecture [11]. Finally, counterfactual
images were generated; these images are referred to as Tgy.

Pseudo-oracle evaluation [5] was used to determine effectiveness, by classi-
fying the presence of the target effect from the counterfactual images. We used a
standard discriminative model (an SFCN [9]) for this purpose and trained it to
distinguish between images with and without target effects using the training
split of the SimBA data. The model was trained until convergence, with the
version achieving the best validation loss selected for evaluation. The optimal
hyperparameters were as follows: learning rate = 1 x 10™%, and weight decay =
1x107°.

3 Results

Global and local identification of failure modes in counterfactual gener-
ation. Pixel value difference maps between counterfactuals for a exemplary image
from the dataset are shown in Fig. 2. It can be seen that while MACAW was
able to successfully add the target effect, it also introduced changes throughout
the brain (Fig. 2C). In contrast, HVAE was highly successful in introducing only
the target effect, although a single pixel artifact was present (Fig. 2E).

Quantitatively, the L2 norm of Z and Z provides a single number corresponding
to how well a CGM performed in generating counterfactuals, with values closer
to zero indicating that the CGM counterfactual is more similar to the ground
truth counterfactual. These L? norm values for the the example shown in Fig.
2 were 203.20 and 85.71 for MACAW and HVAE, respectively, confirming the
results of the visual inspection.

Quantification of effectiveness and attribute amplification. However,
since L? norm values do not provide quantitiative information on the specific
failure modes of a CGM, we also visualize the proposed TEA metric of effective-
ness and amplification in Fig. 3 for all test images. In these plots, each point
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Fig. 2. Representative pixel gray value difference maps for the ground truth (A),
MACAW (B), and HVAE (D) counterfactuals for a representative sample. (C) and (E)
illustrate the failure modes for MACAW and HVAE, respectively. MACAW counterfac-
tual: £=0.895, A=2.238, pseudo-oracle logit=0.998. HVAE counterfactual: £F=0.994,
A=1.310, pseudo-oracle logit=0.999.

represents a counterfactual image generated with the corresponding CGM. It
can be seen that while the HVAE generated counterfactuals mostly concentrated
near an effectiveness value of 1.0 (perfect target effect addition), MACAW gener-
ated counterfactuals across a wider range of effectiveness values. MACAW also
introduced a higher degree of amplification compared to the HVAE, which is
exemplified in the failure modes shown in Fig. 2. These results indicate that
HVAE performed better than MACAW at successfully introducing the target
effect and was less prone to amplification of other (unwanted) effects in the image.

Fig. 3A colour-codes the TEA metrics by the absolute value of subject effect
variation sampled from the distribution N'(0, 1). It can be seen that, for MACAW,
subject effect variation values further away from the mean of this distribution are
correlated with a higher level of amplification. This may be due to the fact that
MACAW was exposed to less data from these higher degrees of subject effects,
which led to problems when trying to intervene on a target variable. However,
this relationship was not found for the HVAE results — conversely, it appears
that for this CGM, effectiveness was impacted more by subject effect variation
(as the counterfactuals with lower effectiveness values tended to have a higher
degree of subject effects, regardless of the amplification value).

Comparison of TEA and pseudo-oracle. The pseudo-oracle model clas-
sified 100% of the ground truth counterfactuals, 98.0% of MACAW-generated
counterfactuals, and 83.9% of HVAE-generated counterfactuals as having the
target effect added at a logit threshold of 0.5. Fig. 3B displays the TEA scatter-
plots colour-coded by logit values of the pseudo-oracle. It can be seen that the
pseudo-oracle confidently classified MACAW counterfactuals as having the target
effect added, even when amplification was relatively high — only predicting that
the target effect was not added (or being unsure) when both effectiveness was
low and amplification was high. Interestingly, the pseudo-oracle classified HVAE
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Fig. 3. Plots representing the TEA metrics of effectiveness and amplification for coun-
terfactuals generated with MACAW (left) and HVAE (right). The TEA metrics are
colour-coded by subject variation in (A) and pseudo-oracle logit value in (B).

counterfactuals as not having the target effects added for some counterfactuals
where the effectiveness was at or near 1.0.

4 Discussion and Conclusion

This work demonstrated how synthetic MRI datasets with ground truth coun-
terfactuals, combined with the newly proposed TEA metric, can successfully
identify failure modes in CGMs and facilitate in-depth error analysis. As a proof-
of-concept, we evaluated two causally-grounded CGMs, MACAW and HVAE,
and analyzed their differences in counterfactual generation in terms of effective-
ness and amplification. Importantly, this otherwise infeasible analysis was only
possible due to the availability of ground truth counterfactuals through SimBA.

Pseudo-oracle evaluation is a common quantitative measure of counterfactual
effectiveness, providing a single value per image to indicate CGM success in target
variable intervention. However, this metric lacks specific information needed for
troubleshooting and refining CGMs. For instance, in our experiments, the pseudo-
oracle showed higher effectiveness for MACAW compared to HVAE. Yet, TEA
plots revealed that HVAE performed better overall in effective intervention and
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avoiding unwanted amplification while generating counterfactuals. This highlights
that pseudo-oracle evaluations may not only be uninformative, but also potentially
misleading in certain scenarios. In contrast, TEA enables the disentanglement
of CGM failure modes into quantitative measures of the effectiveness of target
intervention and the amplification of unintended effects.

The use of SimBA datasets allows for direct comparison of counterfactual
on intervention localized morphological effects, and future work should also
investigate global morphology and intensity-based effects in this context. While
these effects are useful for initial troubleshooting and refinement of CGM, a
limitation of using this synthetic data framework is that analyses would be
restricted to these effects, and may not guarantee that the model would perform
the same on different imaging modalities, for instance. However, moving away
from simple troubleshooting and failure mode analysis toward more realistic
counterfactual validation and broader applicability, TEA could also be used in
cases where ground truth counterfactuals are emulated/approximated in the
real world (e.g., ‘traveling subjects’ [3] or longitudinal data) or when using a
well-validated CGM to generate pseudo ‘ground truth’ counterfactuals.

Here, we showed the feasibility of using SimBA and TEA to explore CGMs
through a simple causal graph, which could also be extended to more complex
graphs by incorporating multiple and interacting target effects, such as sex and
age. In addition, while we demonstrated its utility on causally-grounded CGMs,
our framework is broadly applicable to any conditional generative model.
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