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Abstract. Zero-shot learning (ZSL) is critical for deep learning mod-
els being deployed in unseen downstream applications. Given that fMRI
studies of the human connectome with respect to cognitive disorders are
boutique and lack sufficient labeled samples, a reliable and interpretable
ZSL technology is necessary to empower the brain foundation model
for clinical applications. Although self-supervised learning and transfer
learning on data reconstruction and semantic information, respectively,
have achieved success in ZSL performance for language and vision, little
attention has been paid to the recognition of brain disordering. In con-
trast to stereotypical language or vision data, the human brain is a dy-
namically wired system where distributed regions communicate through
functional connectivity and spontaneously respond to stimuli from envi-
ronmental exposures. Thus, functional neuroimages are often associated
with phenotypic traits underlying brain-environment interactions (BEIs),
such as cognitive states and clinical outcomes. By capitalizing on large-
scale functional neuroimages as well as a rich collection of BEI data, we
break the frame of self-supervised and transfer learning by using logical
regression as the pre-training objective for brain connectome. We for-
mulate ZSL on unseen classes by identifying a reliable matching across
environmental variables, which is derived from a decoder-only model
for BEI prediction from functional connectivity. Together, we present
a novel learning schema of brain-environment cross-attention (BECA)
meta-matching, which is a new horizon of ZSL for brain connectome. In
experiments, all fMRI data in HCP-young adult and HCP-aging datasets
are utilized for pre-training, and BECA is evaluated on disease early di-
agnosis of Autism, Parkinson’s disease, and Schizophrenia, where promis-
ing results indicate the great potential to facilitate current neuroimaging
applications in clinical routines.

Keywords: Zero-shot learning · Brain foundation model · fMRI · Func-
tional connectivity · Autism · Parkinson’s · Schizophrenia.

1 Introduction

Zero-shot and few-shot learning (ZSL and FSL) have demonstrated remarkable
success in various domains, including natural language processing and computer
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Fig. 1. Previous solutions and ours for zero-shot learning (ZSL) and few-shot learn-
ing (FSL) on brain connectome. (a) Self-supervised learning inherits the idea of which
in large foundation models for better latent feature extraction. (b) Transfer learn-
ing brings the power of a pre-trained CLIP model to brain embedding, where ZSL is
achieved by mapping unseen tasks to the continuous text embedding space. (c) Brain-
Environment Cross-Attention (BECA) learns from the brain logical state existing in
large-scale datasets, where finetuning and meta-matching are implemented by injecting
new tokens and t-test, respectively. ‘CA’ stands for cross-attention.

vision. Their capability of knowledge transfer, composition, and generative pre-
diction is impressive and widely applied in real world applications. To that end,
tremendous efforts have been made to pre-train large models on extensive un-
labeled fMRI data using scalable self-supervised and transfer learning for brain
foundation models. This is under exploration since BrainLM [16] applied masked
autoencoder, then followed by various applications of general masking strategies
[26, 9, 28] and transfer learning [12] for phenotypic prediction, e.g. gender and
age. Nonetheless, clinical outcome is rarely the focus in these foundation models.
Meanwhile, in the recognition of brain disorders, where labeled samples are often
limited and expensive to obtain, a robust ZSL framework is vital for deploying
brain foundation models.

ZSL requires the model to generalize to unseen data and tasks without di-
rect supervision. As shown in Fig. 1, previous work can be categorized into two
groups [19], (a) self-supervised learning and (b) transfer learning. Self-supervised
learning is derived from self-regressive methodology that has shown the impres-
sive performance of generative models in computer vision and natural language
processing. Although brain-dedicated masking [16, 26] and advanced encoding
embeddings [9] are proposed to better extract latent features, reconstruction su-
pervision is suboptimal for downstream tasks. The reason is that these models
are purposed the same as the image/language to reconstruct the raw signal from
its masked versions, leaving the complex clinical outcomes not well utilized. Fur-
thermore, the prediction of unseen classes is commonly done by an average of
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the prediction of seen classes [28]. On the other hand, [12] introduced text-based
neuroscience knowledge of a pre-trained Biomed CLIP [29] to brain connectome
transfer learning that shifts latent features to text embedding space. This keeps
the benefit of the CLIP model that bridges the gap between seen and unseen
classes through semantic information [13, 19], so that brain connectome ZSL is
reliable for arbitrary phenotypic prediction. However, the relationship between
seen and unseen tasks is bounded by the language model and cannot be learned
directly from large-scale neuroimaging data.

Unlike language or vision data that require manual annotation, brain fMRI
is often associated with nonimaging phenotypes regarding brain-environment
interactions (BEIs), e.g. cognitive state and mental health, as shown by colored
aims in Fig. 1 (c), which are defined as variable brain status and are commonly
recorded during fMRI acquisition. According to the nature of fMRI, which always
has such brain logical state, a new perspective of the brain foundation model
is necessary to learn from logical regression instead of self-regression or transfer
learning. Thus, FSL and ZSL on unseen classes from boutique studies can be
formulated as a meta-matching, the ZSL manner, or a transformation, the FSL
manner, of the rich environmental variables existing in large-scale datasets, even
subjects of which are all healthy.

To this end, as shown in Fig. 1 (c), we propose Brain-Environment Cross-
Attention (BECA) as a framework for brain connectome ZSL and FSL from brain
logical state under various environments in large-scale datasets. Firstly, the func-
tional connectivity (FC) as input feature is directly multiplied with tokenized
environmental variables denoted by colored capsules, which are produced by a
self-attention between BEI tokens. Then, the cross-attention (CA) denoted by
the brain surface as the brain activation map combines the FC of activated nodes
as output with the supervision of the truth of BEI. Lastly, FSL is achieved by
injecting a new token for the unseen task, that is, a BEI, to join the self-attention
with seen BEIs. In parallel, ZSL meta-matches the brain activation map of the
unseen to all seen data via t-test so that the suspiciousness can be represented
by p value.

Our contributions are threefold: (1) A decoder-only brain foundation model
for brain disordering recognition with released model weights pre-trained by two
HCP datasets. (2) A statistical meta-matching for brain connectome zero-shot
learning based on the proposed foundation model. (3) Promising performance
in the recognition of Autism, Parkinson’s disease, and Schizophrenia using fine-
tuning data from 0% to 100%.

2 Motivations

The dynamic signal of brain functional MRI (fMRI) is a blood-oxygen-dependent
level (BOLD). BOLD signal, which is influenced by a mixture of factors and dis-
torted by non-neuronal fluctuations, has a relatively low signal-to-noise ratio
(SNR) [3]. Brain connectomes, on the other hand, increase the SNR in raw sig-
nals by representing brain activity via the Pearson correlation coefficient (PCC),
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which is also called functional connectivity (FC). Various works have shown su-
perior performance using FC compared to the raw BOLD signal for downstream
applications. For example, benchmark papers [6, 20, 7] evaluated the performance
by using the BOLD or the correlation as the input, and the BOLD signal has con-
sistently demonstrated lower accuracy. In addition, both static FC and dynamic
FC (using the sliding window technique) outperform the BOLD [24]. Therefore,
we focus on the brain connectome ZSL for disease early diagnosis.

The idea of meta-matching between unseen data and seen data for brain con-
nectome analysis is first proposed in [11], where a diverse range of environmental
variables have been found to be inter-correlated with each other given the static
FC. Even without fine-tuning, a kernel ridge regression (KRR) can outperform
the trained version after a basic meta-matching between phenotypic labels. This
motivates us to further develop the idea of meta-matching between BEIs via
cross-attention. Simultaneously, a recent work [18] replaces the fully connected
multilayer perceptron (MLP) with the cross-attention decoder between image
and logical prediction to gain better interpretability. This demonstrates the fea-
sibility of learning the brain cross-attention with respect to the logical BEI for
downstream ZSL given the high inter-correlation between BEIs [11].

3 Methods

To ensure the robustness of BECA map and so does the ZSL, we pre-train
a large brain foundation model coined as large connectome model (LCM) on
multiple datasets including healthy and diseased subjects with various brain
status. Afterward, ZSL and FSL are implemented by the t-test between BECA
maps of testing and pre-training data and injecting new tokens, respectively.

3.1 Model Pre-training: A Large Connectome Model

As shown in Fig. 2 left part, we build the LCM by stacking multiple layers of
the pair of self- and cross-attention. Assume that FC is denoted by M ∈ RN×N

with N the number of nodes, and BEI is denoted by V ∈ RP×E with P the
number of BEI and E the dimensionality of randomly initialized token vector.
Then, lth layer updates BEI token firstly via self-attention as follows

V = Softmax
(
(Vᾱh)(Vβ̄h)

T /
√
D
)
(Vγ̄h) , (1)

where ᾱh, β̄h, γ̄h ∈ RE×D are learnable parameters of linear layers in the self-
attention block, h is the head index, and D is the hidden channel. BEI tokens
are then transformed from FC tokens according to the BECA map B ∈ RP×N

as follows

V = B (Mγ̂h) , B = Softmax
(
(Mα̂h)(Vβ̂h)

T /
√
D
)T

(2)

where α̂h, γ̂h ∈ RN×D, β̂h ∈ RE×D are learnable parameters of linear layers in
the cross-attention block. Lastly, the BEI prediction readout is performed by an
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Fig. 2. Model pre-training for LCM has two stages. Stage one, gain momentum for
LCM in the first m epochs via supervising on all layers. Stage two, a semi-supervision
updates model weights of partial layers to prevent overfitting on a single BEI. Loss is
implemented by cross-entropy.

additional linear layer ρ : RP×D −→ RP×1 marked by the orange block in Fig. 2.
Note that the bias in linear layers is omitted in this section for clarity.

Then, as shown in Fig. 2 right, LCM is pre-trained with two stages to pre-
vent overfitting on a single BEI. BEIs differ in the complexity of feature repre-
sentation, e.g. Parkinson’s disease at different stages of treatment and function-
specified tasking state. In this case, we propose that LCM predicts each BEI at
different layers of the model via a semi-supervision. Obviously, the initialization
of semi-supervised learning is important to have a proper starting point and a
correct learning direction. Thus, training the LCM has two stages, (1) utilize
the average prediction from all layers to update the LCM parameters in the first
m epochs and (2) examine only the best prediction in the rest of the epochs.
Namely, stage 1 produces a ‘momentum’ that can push the training of LCM to
the correct direction, and hence LCM can achieve a diverse and correct feature
representation for different BEIs in the following stage 2. During testing, the
layer with the highest prediction is used for the final output of the LCM.

3.2 Zero-Shot Learning: Cross-Attention Meta-Matching

As shown in Fig. 3, ZSL is implemented via meta-matching (MM) unseen tasks
with seen tasks via an independent t-test determining if correlations of the BECA
map between diverse populations are significantly different. MM is a t-test be-
tween two groups of PCC between Bi of the unseen subject and the positive
and negative seen subjects, where i is the index of BEI and p value by the t-test
reflects the suspicion that the brain is diseased. The probability of prediction s
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Fig. 3. Meta-Matching (MM) between BECA maps for ZSL on a subject with unseen
BEI, where the pial surface indicates a BECA map, ‘PCC’ stands for Pearson correla-
tion coefficient, and ‘Sign.’ stands for significant.

is then calculated with the regularized p value as follows

s =

{
0.5 + p−min(p)

2(max(p)−min(p)) , if p > τ
p−min(p)

2(max(p)−min(p)) , otherwise
(3)

where τ is the threshold for p value. By default τ = 0.05 and the average p
is used with i = 1, · · · , P . Since our ZSL considered the prediction as binary
classification, Eq. 3 can restrict s into ranges [0, 0.5] and [0.5, 1.0], respectively,
stratifying the probability of healthy and disordered brains.

Given the design of our ZSL and model architecture, we propose two types
of FSL. First, the design of LCM allows it to be easily fine-tuned with unseen
datasets that have Q new phenotypes by concatenating new tokens as [V, V̂]
with randomly initialized V̂ ∈ RQ×E . We denote the first type as BECA (Sup.).
The second is to search for the hyperparameters i and τ of MM as described in
Section 3.2 with few training data. This type is denoted by BECA (MM).

4 Experiments

We partition brain regions using the AAL atlas [22] through all experiments. The
pre-training data is preprocessed with FMRIprep [10]. Performance is evaluated
with 10-fold cross-validation (CV).

Datasets and implementations: HCP-young adult (HCPYA) [23], HCP-
aging (HCPA) [2], and Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[25] are used to pre-train LCM. HCPs are instrumental in task recognition re-
search, offering a comprehensive view of young adults and the aging process,
respectively. HCPYA has over 1100 healthy young adults, and each of which
is associated with seven human behaviors, e.g. language and working memory.
HCPA includes data from 717 subjects, encompassing fMRI records (n = 4, 863)
with human behaviors associated with memory, sensory-motor, and the resting
state. ADNI provides BEI on brain disorders with a collection of pre-processed
fMRI (n = 138) including clinical diagnostic labels of Alzheimer’s Disease (AD).
These pre-training datasets result in 13 BEI tokens (7 tasks in HCPYA, 3 tasks
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Fig. 4. The average BECA map of all test data at the readout layer. The node size
indicates the relative attention weight.

in HCPA, 1 resting state, 1 healthy state, and 1 AD state) implemented in
our model. Autism Brain Imaging Data Exchange (ABIDE) [27], Parkinson’s
Progression Markers Initiative (PPMI) [27], and Schizophrenia (SZ) are pre-
processed and used for ZSL and FSL evaluation, where ABIDE contains 537/488
(n = 1, 025) Control Normal (CN)/Autism subjects, PPMI contains 15/113
(n = 128) CN/Parkinson’s, and SZ is in-house data of this work with 159/30
(n = 189) high-risk CN (sibling of diseased subject)/SZ. LCM is implemented
with 8 heads, 32 layers, and 2048 hidden channels containing 1.2B learnable pa-
rameters. The pre-training took 14.4 hours using a RTX 6000 Ada GPU. Codes
and model weights can be found here1. We compare with one state-of-the-art
(SOTA) brain connectome foundation model, BrainMass (30M) [28], along with
some SOTA brain-dedicated models without pre-training, BolT [1] (1.6M) and
NeuroPath [24] (0.7M). BrainMass is pre-trained with our data since their re-
leased model uses a different atlas, hidden channels are all set as the same for a
fair comparison.

4.1 Classification Results

Evaluation metrics for the classification experiments are the average weighted F1
score and the Area Under ROC Curve (AUC). Since datasets are boutique with
a class imbalance issue, F1 score indicating the precision and recall sometimes
cannot reflect performance differences for PPMI and SZ. In contrast, AUC can
quantify the performance of the predicted probability. We test models with 0%,
i.e., the ZSL, 1%, 10%, 50%, and 100% training data in each CV fold, where
each percentage has at least one sample for each class. Note that it is one-shot
learning in the case 1% for PPMI and SZ due to the limited sample size.

The performance of ZSL and FSL is listed in Table 1. Compared to the SOTA
models, the proposed BECA always has the best F1 score for each section on all
datasets except for 1% SZ. BECA shows a minor shortage of 0.31% lower F1 but
8.26% higher AUC than BolT on 1% SZ. In general, BECA demonstrated a bet-
ter ZSL performance than BrainMass using an average guess, and it performed
a new SOTA performance when using all training data.

1 https://github.com/Chrisa142857/brain_network_decoder/tree/zero-shot-learning
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Table 1. Zero-shot and few-shot learning performance, where ‘FT %’ stands for the per-
centage of finetuning data size, and bold indicates the best score in a section.

FT % ABIDE PPMI SZ

F1 score AUC F1 score AUC F1 score AUC

0% BrainMass 33.92±4.91 50.51±6.35 6.19±5.82 27.02±11.26 78.60±8.74 41.67±20.44

BECA (MM)39.70±5.56 51.50±11.4916.80±14.6738.10±18.1678.60±9.77 52.15±25.35

1% BolT 47.73±6.47 58.42±3.61 71.40±16.46 40.55±28.81 72.55±17.6873.69±16.03

NeuroPath 45.73±12.62 51.65±3.83 73.69±14.17 51.19±23.90 71.04±19.49 69.65±12.54

BrainMass 43.08±2.58 49.88±4.46 72.32∗
±14.67 50.00∗

±0.00 4.30∗
±2.75 50.00∗

±0.00

BECA (MM)44.91±5.96 50.00±2.99 52.03±25.69 40.49±41.04 50.32±34.96 57.61±20.66

BECA (Sup.)54.06±3.30 55.63±4.91 74.36±16.7466.00±25.4672.24±13.33 81.95±16.27

10% BolT 58.97±4.89 61.82±5.71 69.47±18.41 62.69±25.21 79.70±9.76 84.56±16.68

NeuroPath 54.12±6.73 55.80±4.60 75.12±15.62 59.21±32.71 78.60±9.77 77.12±15.31

BrainMass 46.75±7.62 43.23±9.78 75.72±14.22 38.74±24.38 78.60±8.74 36.69±27.68

BECA (MM)50.14±8.23 50.40±8.57 43.18±23.77 24.58±29.47 78.84±9.75 44.73±25.25

BECA (Sup.)65.43±3.64 65.83±3.46 76.57±16.4771.55±36.5081.63±8.58 74.50±10.93

50% BolT 63.12±2.81 63.25±3.60 77.41±14.1063.95±20.44 80.16±12.68 76.91±24.10

NeuroPath 60.23±2.77 60.13±3.59 75.72±15.90 62.60±25.59 80.16±12.68 82.47±12.31

BrainMass 60.12±4.93 66.01±3.40 75.72±14.22 40.55±21.55 78.60±8.74 32.09±13.65

BECA (MM)53.36±3.11 52.24±4.49 61.99±31.43 44.70±32.66 77.52±9.58 56.76±16.83

BECA (Sup.)66.24±4.41 66.41±4.74 75.72±15.90 89.98±7.94 81.73±11.4870.52±20.90

100%BolT 64.41±1.97 64.05±3.86 74.92±15.18 68.02±26.84 81.14±9.75 83.42±8.48

NeuroPath 65.04±5.13 64.53±6.28 76.03±16.06 64.98±16.60 81.74±8.90 78.98±14.01

BrainMass 63.80±5.69 69.65±4.39 75.72±14.22 72.10±20.73 78.60±8.74 24.94±19.34

BECA (MM)48.31±3.05 48.38±5.29 73.23±16.21 31.26±33.01 72.81±7.75 53.78±24.43

BECA (Sup.)74.40±14.3677.98±12.6586.08±11.2889.81±16.0483.61±6.01 74.35±15.32

*Note: Predictions by BrainMass are identical with one-shot learning.

4.2 BECA Map Visualization

The visualizations of the average BECA map of test data with the same label in
ABIDE, PPMI, and SZ are shown in Fig. 4. We can observe BECA map showing
activated in default mode (DMN) and sensorimotor networks (SMN) for ABIDE,
which aligns with current neuroscience knowledge [17, 30]. For PPMI, BECA is
attentive to ventral attention (VAN) [21] and frontoparietal (FPN) [4]. For SZ,
BECA also agrees with [5, 14, 15, 8] to be attentive to DMN, FPN, SMN, VAN,
and limbic.

5 Conclusion

In conclusion, we propose a novel ZSL framework coined as brain-environment
cross-attention (BECA) for brain disease early diagnosis. Unlike language or



Brain-Environment Cross-Attention (BECA) Meta-Matching 9

vision data that require manual annotation, brain fMRI has nonimaging pheno-
types regarding brain-environment interactions (BEIs), e.g. cognitive state and
mental health. Thus, we break the frame of self-supervised and transfer learning
for brain connectome by formulating FSL and ZSL on unseen classes as a meta-
matching and a transformation, respectively, of the rich environmental variables
existing in large-scale fMRI datasets, even subjects of which are all healthy. We
pre-train an LCM on multiple large-scale datasets, and test BECA on ABIDE,
PPMI, and SZ, where promising performance using data from 0% to 100% il-
lustrates the great potential to facilitate current neuroimaging applications in
clinical routines. We released the LCM weights pre-trained on HCPs and ADNI.
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