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Abstract. Spine aging is a complicated process shaped by pathologies,
genetic factors, and lifestyle influences. Radiologists routinely use MR
images to assess the spinal health of patients in different age brack-
ets. Quantifying spinal health as an organ age would allow ranking and
monitoring of patients within the same and across different demograph-
ics. However, spine age estimation has been limited to classical machine
learning methods which suffer from high error rates and a lack of in-
terpretability. Moreover, inherently explainable state-of-the-art models
in organ age estimation, such as prototypical networks, are limited to
2D and are not extendable to repeated prototype labels. This is im-
portant as organs typically degenerate in different ways as a result of
aging. We propose ProgreSpine, the first deep-learning-based 3D spine
age estimation model based on prototypical regression with a loss specif-
ically tailored to repeated prototype labels. We trained and tuned our
proposed model on a large dataset of 9542 samples and performed a
thorough evaluation on 1069 samples to demonstrate improved perfor-
mance against the state-of-the-art with a mean absolute error of 3.61
years. Furthermore, the results suggest that the model learns the proto-
types based on clinical conditions that will facilitate monitoring disease
progression with a transparent model. The source code is available at
https://github.com/prenuvo/progrespine.
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1 Introduction

Spine aging is a multifaceted process influenced by pathologies, genetics, and
lifestyle factors [19]. Magnetic Resonance Imaging (MRI) offers excellent visu-
alization of the musculoskeletal system, allowing the assessment of age-related
morphological changes. Historically, radiologists have used this modality to de-
velop protocols for patient stratification and holistic assessment of spine degen-
eration [8,21]. The assignment of a biological age to the spine that correlates
with age-related degradation provides patients and radiologists with a reliable
indicator of spinal health. It enables more accurate risk stratification by iden-
tifying patients with advanced degeneration relative to their chronological age.
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Fig. 1. Our model predicts spine age based on the distance of the input 3D MRI to the
prototypes from the training set. In the beginning, the background organs are masked
using a segmentation model. Next, Prototypes are learned by training a 3D CNN
feature extractor. The prototype set is the subset of the training set and each prototype
represents a whole spine image. The predicted age is computed as the weighted average
of the prototype labels based on their distance.
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It can also inform clinical decision-making by assessing disease progression and
provide patients with an individualized measure to guide long-term care.

To the best of our knowledge, deep learning approaches have not been ex-
plored for spine age estimation and most recent studies rely on classical machine
learning such as random forests, extreme gradient boosting trees, and support
vector machines [14,25]. However, these methods were limited by small datasets
(<100), relied on manually extracted features and exhibited poor performance
with a Mean Absolute Error (MAE) of 10.28 years [25]. Given the feasibility
of detecting spine degeneration using deep learning [5,9,10,16,29,28], it might
be possible to address the aforementioned shortcomings in classical spine age
estimation through end-to-end deep learning.

Deep-learning-based age estimation is typically achieved through either re-
gression or binning. In the regression approach, the model directly predicts a
continuous value representing the chronological age [3,6,24]. In the binning ap-
proach, the chronological age is rounded to the nearest integer and treated as
a categorical variable. Subsequently, the model predicts the probability of or-
gan age belonging to each bin [20,23]. However, despite their effectiveness, these
studies rely on black-box architectures that offer little insight into the decision-
making process which impedes clinical trust and regulatory approval. By incor-
porating Explainable Artificial Intelligence (XAI) techniques, we can illuminate
which features and regions contribute most significantly to age estimation.

XAI comprises post-hoc and inherently explainable (ante-hoc) methods. Post-
hoc methods attempt to explain black box model decisions after training, often
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using saliency techniques to highlight the influence of individual input voxels
on predictions. However, these explanations do not reliably reflect the model’s
decision-making process. The resulting maps are often noisy, non-robust, and
misleading, making it challenging to explain why the model favors one class over
another [1,2,11,12,22,27].

Inherently explainable techniques include prototypical networks. The archi-
tecture of these models shows how much each prototype from the training set has
contributed to the final prediction. Several studies have used prototypical net-
works for classification in healthcare applications [11,12,15,17,27,30]. The only
regression studies in medical imaging are INSightR-Net [12] and ExPeRT [11].
INSightR-Net is an ordinal regression task on 2D images of eye without a truly
continuous latent space [11]. Hesse et al. [11] proposed ExPeRt which esti-
mates brain age using a single 2D MRI slice. Their proposed model outperforms
INSightR-Net in terms of MAE.

We have introduced ProgreSpine a prototypical network to regress spine age
based on T2-weighted whole-spine MR images. This model takes 3D images
as input, segments the spine as the region of interest, and estimates spine age
based on the distance between the input and prototype embeddings. As spine
degeneration includes curvature disorders and might include multiple regions,
unlike patch-based prototypical networks [12,27] and in alignment with ExPeRT
[11], we decided to use the entire image as the prototype. This work improves
upon ExPeRT for 2D age estimation [11] by extending the model from 2D to 3D
MRI. We introduced a new loss to handle several prototypes with the same age
label as spine degeneration might have different spondylosis appearances in T2
MRI [21] and one sample might not necessarily represent all degeneration types.

Our contributions, to the best of our knowledge, are the following. This
manuscript is the first 3D extension of prototypical regression. We also present
the first deep-learning approach to spine age estimation. Furthermore, we tai-
lor the prototypical loss to handle different types of degeneration. Finally, we
perform an extensive analysis of age estimation methods on a large dataset of
10,611 whole-spine MRI with 1,069 samples in the testing set.

2 Method

Figure 1 shows an overview of our proposed approach. The field of view in a whole
spine MRI spans multiple organs that age at different rates. To disentangle the
spine from the rest of the organs, we use a U-Net semantic segmentation model
similar to Khallaghi et al. [13]. This process generates a segmentation mask that
encompasses the cervical, thoracic, lumbar, and sacral vertebrae, intervertebral
discs, ribs, cerebrospinal fluid, and the spinal cord. This mask is dilated and used
to remove other regions from the MR image. To decrease the spatial variability
of samples in our dataset, we resample all series to a common spacing of 0.9 x
0.9 x 3 mm?. Subsequently, we center-cropped or padded all images to a fixed
size of 384 x 793 x 14.
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2.1 Prototypical Network Architecture

Our goal is to train a fully convolutional network based on the set of 3D MR
images X C RY*"Xd to extract the latent space set Z C RW=*h=xd=x¢cz where
Wy, h,, d,, and c, represent width, height, depth, and channel dimension. The
backbone of the feature extractor comnsists of five 3D convolution blocks and
a top block with a sigmoid activation function inspired by Peng et al. [20].
Concurrently, we learn a set of prototypes P = Uycy P, where Y C R is the set
of prototype labels and P, C Rw=xh=xd=xcz g the set of prototypes belonging
to label y. |P| = n, and |Y| = n, where n, and n, are the total number of
prototypes and unique labels of prototypes, respectively. The vector y? € R"»
denotes prototype labels. Labels are set at the start of training and remain fixed
throughout.

The prototypes are part of the model parameters and are simultaneously
learned with the feature extractor. Therefore, after each iteration, the prototypes
are updated. However, the prototypes do not necessarily indicate an image that
can be visualized at each step. Therefore, we have to project the prototypes to
the closest image representation in the latent space. Projection is done every N
epochs similar to ProtoPNet [4].

2.2 Training Objective

As the first step, we need to define the distance between the image representa-
tions in the latent space. Since latent space forms a high-dimensional manifold,
measuring feature distances is challenging [11]. In the local neighborhood, this
distance is approximated by Euclidean distance, as demonstrated by Teenbaum
et al. [26], who showed that Euclidean distance effectively approximates small-
scale distances on manifolds.

To compute the distance between the two image representations, one needs to
recall that the latent space Z € R%=*h=xd=xc: consists of m = w,h,d, patches.
We define the pair-wise patch distance matrix C' € R™*™ ¢;; = |z; — pj|2 where
z; and p; are the embedding vectors of size c. of i-th patch of an image repre-
sentation and j-th patch of one of the prototypes. We opt for optimal transport
(OT) [11] that would define dj, the distance of the input image representation
to the k-th prototype, based on C' using a matching matrix @ € R™*":

dp =Y cijais (1)

i=1 j=1

where ¢;; and ¢;; are elements of C' and Q. OT is especially important in this
context, given that the spine might not be centered in the volume and its cur-
vature might exhibit abnormalities such as lordosis, kyphosis or scoliosis. As a
result, a specific part of the spine in one image might correspond to the i-th
patch in one image and j-th patch in another. OT ensures that these patches
are compared against each other.
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In order to employ OT, we define the following optimization problem to
minimize the distance ) with constraints:

mmZchq” s.t. Zq” = wl,Zq” = w2 (2)

i=1 j=1

where wy and ws are the initial marginal distributions. However, this is a compu-
tationally expensive problem. Cuturi [7] introduced the entropic regularization
to smooth the optimization problem and transformed Eq. 2 into:

manZchw + 6H ZZ Zjlog qU (3>

i=1 j=1

where € is the regularization weight. This objective is solvable using the classical
Sinkhorn divergence algorithm and can be used to train the network end-to-end
as it is fully differentiable [11].

", is defined as the softmin weighted average of distances to P,,

d;.e~%
’r 7
dy, = § P (4)
diEDyk djeDyk

where D,, is the list of distances to prototypes with label y;,. We aim to regularize
the distances between samples and prototypes according to their label (age)
differences: d}, « |y —y| where y is the sample label and y;, is the k-th prototype
group label. To this end, we define the loss for a sample as:
L(d,Y,y) = > (Is.d = (ly — ye)wi " (5)
YLEY
train ;

where s is a learnable scaling parameter and wy’
the k-th prototype group sample defined as:

is the weight associated with

(y—yp)?

wirm =" 27 ta (6)

where o is the standard deviation of the Gaussian function that controls the local
neighborhood size and « is a small number that ensures samples and prototypes
with a large label difference have a contribution to the loss and stay far from
each other, preventing their collapse. The idea behind the softmin is to only
force the closest prototype in each age to be regularized by the distance, and the
rest of the prototypes can learn other types of degeneration. Moreover, softmin
is preferred over the minimum as it allows gradients to flow for all prototypes.
Otherwise, some prototypes may be ignored and never updated during training.

2.3 Inference

To predict the age of a new spine MRI, we perform a weighted average on the
prototype labels in distance r from the inference image representation in the
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latent space. The weights are defined using a Gaussian kernel:

2
np test, P _Leedi) .
DL WET Y st ) e 20792 , ifsdy<r
y= p test Wk = . (7>
k=1 Wk 0, otherwise

where y), is the k-th prototype label. After training, we used the validation
data to correct the bias towards the mean using Peng et al. method [20].

3 Experiments and Results

3.1 Data

We utilized a comprehensive dataset comprising of 10,611 3D T2-weighted whole
spine MRI series with the sagittal view as the imaging plane. These images are
reported normal in appearance in the radiology report. The scans were collected
from 2011 to 2024, using 19 scanner machines consisting of Siemens Magnetom
Aera, Siemens Espree, and Philips Ingenia Ambition X across 10 clinics in North
America. The dataset included individuals aged 25 to 84 years, including those
with variational anatomy. The data was divided based on age and gender into
training, validation, and testing sets of 8491, 1051, and 1069 samples.

3.2 Implementation

For the experiments, we set the prototype labels to have a gap of 2 years n, = 31
and be repeated 3 times for each age, summing up to n, = 93 prototypes. The
dimensions of the latent space Z were w, = 12, h, = 24,d, = 1, and ¢, = 64. The
network parameters were selected or initialized as follows: r = 5, A = 0.1, s = 10,
o =1, a = 0.2. The learning rates were set to 0.0005 (divided by half every 10
epochs) and 0.01 for network parameters and the scaling parameter, respectively.
We trained the model for 50 epochs and every N = 5 epochs projected the
prototypes. Batch size of 2 was used and we accumulated the gradients for 3
iterations before backpropagation. We used an instance with an Nvidia A10G
GPU to train our model.

3.3 Quantitative Analysis

A comparison of performance with previous work and ablation study based on
MAE and R? is shown in Table 1. We compared our model against the Simple
Fully Convolutional Neural Network (SFCN) [20] feature extractor (similar to
our feature extractor) with Mean Squared Error (MSE) and ordinal [18] losses.
We also compared against the prototypical-based method for age estimation,
ExPeRT [11], but extended the feature extractor to 3D (3D-ExPeRT) with the
same architecture as our proposed model. We tested the 3D-ExPeRT with and
without Repeated Prototype (RP) labels. For 3D-ExPeRT without RP, we used
60 prototypes, one sample per age from 25 to 84.
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Table 1. Comparison with previous work and an ablation study after bias correction.
The best performance is shown in bold, while the second-best is underlined.

OT RP MAE [y1] R?

SFCN [20] + MSE - - 3.90 0.833
SFCN [20] + Ordinal [18] - - 3.83 0.839
3D-ExPeRT [11] v X 4.44 0.787
3D-ExPeRT [11] v v 4.10 0.822
ProgreSpine X v 3.85 0.841
ProgreSpine v X 4.61 0.763
ProgreSpine v v 3.61 0.857

The best state-of-the-art (SOTA) model was SFCN + Ordinal loss. The pro-
posed model improved the performance by 0.22 years in MAE and 0.018 in R2.
Compared to the SOTA explainable model, i.e. 3D-ExPeRT without RP, our
model still improved the performance by 0.83 years and 0.07 in R?, highlighting
the importance of repeated prototypes and the proposed loss. We also tried the
repeated prototype labels for 3D-ExPeRT. It can be seen that ExPeRT loss is not
generalizable to repeated prototypes as it tries to regularize the distances to all
of the prototypes of the same label simultaneously. This limits model flexibility
in learning different types of prototypes (degeneration) for the same age.

We also performed an ablation study on OT and RP. We replaced OT with
average pooling, where we took the average patch embeddings and computed
the Euclidean distance between the input and the prototypes. We observed that
OT outperformed average pooling, indicating the importance of patch match-
ing in computing the distance to prototypes. Finally, adding RP to ProgreSpine
improved performance in terms of MAE and R?. This suggests including more
prototypes in each age group allows for capturing different types of spine degen-
eration which in turn leads to better performance and model explainability.

3.4 Qualitative Analysis

Figure 2 depicts the prototypes diversity across different clusters based on radi-
ology reports. After embedding corresponding radiology report conditions into
a vector and UMAP visualization, we found that prototypes cover all clusters,
representing different degenerative patterns. Figure 3 demonstrates our inference
results. A 65 years-old patient as input has a distance of 1.78 to prototype 58
(label: 63), 3.51 to prototype 59 (label: 63), and 38.24 to prototype 3 (label: 25).
Prototype 58 is the closest prototype to the input. Both have lordosis, a straight-
ened degenerated cervical section, and endplate change and multiple disc bulges
in the lumbar region. However, the input has scoliosis and the prototype has a
moderate change in a lumbar vertebra that causes the distance. Prototype 59
has the same label as 58, however, it has a healthier cervical without lordosis
but with a bone lesion in the lumbar area. This suggests that the model does not
suffer from prototype collapse for prototypes with the same label. The rest of
the lumbar conditions of prototype 59 are similar to the input image and hence
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Fig. 2. Prototype diversity across clusters of the population based on radiology report.

they are not very far from each other. The farthest prototype is prototype 3
which represents a relatively healthy spine with a few minor lumbar disc bulges.
The weights are computed based on Eq. 7 and since the distance to proto-
type 80 is more than r» = 5, the weight is 0. The regression plot of estimated
spine age vs. chronological age is shown in Fig. 3 (top right). It can be seen
that for individuals older than 80 years, ProgreSpine under-predicts. Notably,
all baseline methods also under-predict in this range. This could be due to spar-
sity in the senior age bracket in our dataset, only 25 subjects aged over 80 out of
10611 (0.24%). The Bland-Altman plot demonstrates that the model has mini-
mal bias (-0.05 years), indicating no systematic over- or underestimation. The
limits of agreement (4+1.96 standard deviation) span approximately +9 years,
which reflects not only model uncertainty but also potential biological variation
where chronological age may not align with spine-specific aging. The bottom
right figure shows prototypical distances, weights, and their labels for the input
inference image. We observed that considering the minimum distance from the
same label, the distances are regularized in alignment with differences in age.

4 Conclusion

We proposed ProgreSpine, the first deep-learning and prototypical regression
method for spine age estimation. We extended the prototypical regression to
3D. Our results suggest the importance of having repeated prototypes since the
spine degenerates in different ways. We generalized the prototypical loss [11] to
repeated prototype labels and demonstrated improved performance. Finally, we
used a large dataset of T2-weighted whole-spine to extensively explore SOTA
models in spine age estimation. We observed that prototypes with similar condi-
tions are closer in distance to the input image. Future work includes improving
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Bottom right: Weighting function applied to prototypes based on distance.
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the model performance in the senior group (80+) with targeted data collection,
extending this model to different organs, and exploring the potential of predicted
spine age as a biomarker and its relation to spine conditions.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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