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Abstract. Preclinical imaging studies are vital to the research, develop-
ment, and evaluation of new medical therapies. Images acquired during
these studies often have high in-plane resolution but low through-plane
resolution, resulting in highly anisotropic volumes that hamper down-
stream volumetric analysis. Additionally, since there are no image acqui-
sition standards across studies, training data for conventional supervised
super-resolution (SR) methods is limited. In this work, we compare two
SR methods that do not require additional training data. The first is
ECLARE, a self-SR approach that creates its own training data from
in-plane patches drawn from the anisotropic volume. The second is Bipla-
nar Denoising diffusion null space model (DDNM) Averaging (BiDA), a
proposed method leveraging two independently pre-trained denoising dif-
fusion probabilistic models and the DDNM posterior sampling technique.
We evaluate both methods first on rat data at two scale factors (2.5×
and 5×) and compare signal recovery and downstream task performance.
We further evaluate these methods on a different species (mice) to mea-
sure their generalizability. Both methods experimentally resulted in good
signal recovery performance, but only the images super-resolved by BiDA
were accurately skullstripped downstream. Although both methods per-
formed well on the in-domain rat data, BiDA did not fully generalize to
the out-of-domain mouse data.
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1 Introduction

Magnetic resonance imaging (MRI) is a prevalent modality in preclinical stud-
ies [14] owing to its excellent ability to image soft tissue in the head and
brain [12,36]. MRI is flexible due to the variety of available pulse sequences. Often,
through-plane resolution is sacrificed due to the signal-to-noise ratio, scan time,
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and the ethics of sedation duration or constraining the animal in the scanner.
Thus, while anisotropic image volumes are usually acquired for in-plane reading,
they are subsequently unsuitable for volumetric analysis. For the purposes of this
paper, such anisotropic images are considered to be low-resolution (LR) along
the through-plane axis.

Super-resolution (SR) is the estimation of the high-resolution (HR) image
given the LR image by recovering the lost high-frequency information. B-spline [30]
interpolation increases the number of voxels in the image, but does not esti-
mate high-frequency information and therefore is not strictly SR. Nonetheless,
interpolation approaches are popular due to their simplicity and ease of use. In
contrast, learning-based approaches [3,4,8,13,15,18,23–25,34,35] aim to solve the
SR problem directly. These approaches conventionally learn to estimate the HR
image on average over a training dataset with an ℓp loss function. Optimizing the
ℓp norm reduces the ability of such models to estimate high-frequency coefficients,
resulting in images that are blurrier than desired. Learning-based SR approaches
may also suffer from domain shift (e.g., SR scale factor, pathology, field strength,
species imaged, etc.). This domain shift issue makes it difficult to generalize
traditional ℓp-trained networks to data outside the training set, a problem that
is pervasive in preclinical imaging.

Zero-shot SR approaches report strong generalization for SR on unseen
data. These include methods based on compressed sensing with generative
models [2, 17, 20, 33], internally supervised methods [22–25, 27], and null-space
models [31,32]. The generative model approaches relying on denoising diffusion
probabilistic models (DDPMs) [9] have recently achieved the most realistic results.
DiffusionMBIR [6] is an approach that leverages 2D generative models to estimate
the underlying 3D volume using iterative reconstruction. This is one method to
address the well-known “slice inconsistency” problem that occurs when using 2D
methods for 3D image volumes [5]. Null-space models, also relying on generative
models, have the additional benefit of being cycle-consistent with respect to the
degradation operator; that is, only the lost information is estimated and the
observed information present in the LR image is untouched. The most prominent
of these methods is the denoising diffusion null-space model (DDNM) [32], which
forms the basis of our proposed approach.

In this work, we train two independent DDPMs to generate HR 2D slices
from orthogonal planes of rat MR images. Then, to mitigate slice inconsistency,
we use DDNM inference on through-plane slices to generate two volumes that
are averaged to produce a final result. We name our method Biplanar DDNM
Averaging (BiDA) and evaluate its performance on withheld rat and mouse data.
Specifically, we: 1) curate and preprocess HR 2D slices of rat data and train two
DDPMs to approximate these distributions; 2) propose BiDA for through-plane
SR; 3) evaluate BiDA on out-of-domain rat data and compare to other state-of-
the-art SR methods with respect to signal recovery metrics and a downstream
task; and 4) evaluate BiDA on out-of-domain mouse data.
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2 Methods

First, we write our model of the degradation process. In 2D multi-slice MRI,
the loss of resolution due to slice selection can be modeled as y = (x ∗ h) ↓r
where x is the HR through-plane signal, h is the slice selection profile (i.e., the
through-plane point-spread function), ∗ is convolution, r is the down-sampling
factor, and y is the LR through-plane signal. Since this equation is linear, it is
often written as y = Ax, where A is the matrix form of this convolution.

Our proposed method, BiDA, is the application of two DDNMs in different
orientations to generate two volume estimates of the HR image that are averaged
into the final result.
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Fig. 1: Representative isotropic rodent images from each of the datasets used in
this study. Here, in-domain data refers to data used in training the DDPM, and
out-of-domain data is withheld from the DDPM training. At this resolution, the
out-of-domain CAMRI mouse dataset requires zero-padding to have the same
field-of-view extents as the available rat data.

Data We train and validate with publicly available preclinical MRI datasets.
Example images from the datasets are shown in Fig. 1.
CAMRI Rat and Mouse Brain MRI The CAMRI Dataset [10] consists of
high-resolution MRI scans of rat brains acquired on a Bruker 9.4T MRI system.
We used 63 rat and 16 mouse T2w RARE scans that were acquired at a 200µm
isotropic resolution.
OpenNeuro MultiRat Resting-State fMRI This dataset [7] includes 65
high-resolution isotropic MRI datasets from 46 institutions. We use a subset of
149 isotropic structural T2w scans acquired at five resolutions: 250µm (49 scans),
200µm (30), 190µm (20), 160µm (30), and 110µm (20).
OpenNeuro Optogenetic fMRI of STN DBS in Parkinson’s Disease
Rats This dataset [16] consists of functional and structural MRI acquisitions
from rodent models of Parkinson’s disease. We used a subset of nine isotropic
structural T2w MRI scans acquired at 200µm isotropic resolution.

Preprocessing and Standardization To ensure consistency and optimize
the dataset for training, we applied a series of data selection and preprocessing
steps. 1) Only isotropic 3D scans were selected, with anisotropic images being
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Fig. 2: BiDA Method (Left) The training phase generates two independent
2D slice-wise DDPMs. (Right) The inference phase, uses the DDPM models in
DDNM frameworks to perform super-resolution on all slices independently. The
resulting volumes are then stacked and averaged to produce the final result.

reserved for validation, resulting in 197 isotropic volumes. 2) N4 bias field
correction [29] was applied to remove inhomogeneities. 3) To ensure consistency,
all images were interpolated to a 200µm isotropic digital resolution using cubic
B-spline interpolation. 4) Pixel intensities were linearly normalized to a range of
[−1, 1] by clipping extreme values based on the 1st and 99th percentiles. 5) Scans
were reoriented to the standard RAS format and center-padded to 144× 144× 64
voxels. 6) To train the 2D DDPM, 2D slices were extracted from axial and sagittal
planes, yielding 12, 608 axial and 28, 370 sagittal slices.

DDPM Training We first trained two independent DDPMs on the in-
domain rat data described above, one for each of the axial and sagittal orientations.
We followed the standard procedure for diffusion training with forward Gaussian
noise, but rather than ϵ̂ prediction, we used flow prediction [11]. Training data
augmentation included small rigid transformations with a random rotation up to
10◦ and random translation up to 5 pixels in each direction.

DDNM Inference Here, we summarize the DDNM posterior sampling
framework [32]. Given an estimate of A, for each time t in the diffusion process,
every xt is split into its range and null-space components,

xt,range = A†Ax, and xt,null = (I −A†A)x. (1)

Since y = Ax, DDNM replaces the range component to produce an estimate of
the clean image,

x̂0|t = A†y + (I −A†A)x. (2)

This is repeated for all t = T, T − 1, . . . , 1.
At inference time, we use this procedure to independently super-resolve each

through-plane slice of the anisotropic volume. Then, all super-resolved slices for
each through-plane are stacked into their respective volumes, and then averaged
to produce the final result. This process is outlined in Fig. 2, which shows both
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the training and inference steps. We approximate A with h as a Gaussian kernel
with full-width-at-half-max equal to the slice thickness and by assuming no slice
gap in acquisition. During inference, we use the DDIM sampling scheme [28] with
16 timesteps.

3 Experiments and Results

We evaluated our approach using peak signal-to-noise ratio (PSNR) to assess
reconstruction quality and a consistency Dice Similarity Coefficient (cDSC) for
skull stripping consistency. For the cDSC, we used [10] to skull strip both the HR
and super-resolved images, treating the mask generated from the HR image as a
silver standard. We compared BiDA with ECLARE [25] (a self-SR method), and
cubic interpolation [30]. On an NVIDIA A16, BiDA processes a 144× 144× 64
voxel volume in ∼10s (<10 GB vRAM) while ECLARE takes ∼5 min at similar
memory. For significance testing, we used a two-sided Wilcoxon signed rank
sum test between ECLARE and BiDA on both resolutions and for the in- and
out-of-domain data, with a significance level of 0.001.

We performed these evaluations at two SR scales 2.5× (i.e., going from
500µm to 200µm) and 5× (i.e. going from 1000µm to 200µm). These scales were
obtained by simulating LR volumes from the HR in-domain rat isotropic volumes.
Simulation was done by convolution with a slice selection profile generated with
the Shinnar-Le Roux algorithm [19,21,26] of the full-width-half-max equal to the
desired slice thickness (500µm and 1000µm respectively) followed by subsampling
by the desired slice spacing (2.5× and 5×, respectively).

First, we comment on the overall results in Figs. 5 and 7. Qualitatively, the
results generated by BiDA appear sharper and have more details than the other
methods. This appears to affect the skull stripping algorithm as well, which
achieved a more accurate brain mask compared to the ECLARE results. This
potentially could be due to the sensitivity of the downstream task to the textures
in the image. Quantitatively, PSNR was lower for BiDA compared to ECLARE.
This is expected, due to the perception-distortion tradeoff [1].

Next, we separate our analysis into in-domain and out-of-domain. The in-
domain evaluation included 21 rat volumes from the same cohorts used to train
BiDA, and the out-of-domain evaluations included data not used in training
(nine volumes from the Optogenetic dataset) and the CAMRI Mice dataset. The
out-of-domain evaluations represented different contrast and different species.

The in-domain rat PSNR results are shown in Fig. 3(a) and the out-of-domain
results are shown in Fig. 3(b). Representative results for in-domain rat data are
shown in the first and second rows of Fig. 5.

The results of the in-domain cDSC rat data are shown in Fig. 4(a) and the
out-of-domain results are shown in Fig. 4(b). Representative out-of-domain rat
data are shown in the third and fourth rows of Fig. 5.

The out-of-domain mice data results are shown in Fig. 6, with Fig. 6(a) showing
PSNR results and Fig. 6(b) shown the cDSC results. PSNR was calculated on
images that had their zero-padding removed to avoid artificial metric inflation.
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Fig. 3: The PSNR values for cubic interpolation (Cubic), ECLARE, and the
proposed method (BiDA) are shown for the in-domain (a) and the out-of-
domain (b) rat data at two different SR scales 500µm to 200µm (×2.5) and
1000µm to 200µm (×5).
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Fig. 4: The cDSC scores are shown for the in-domain (a) and the out-of-domain (b)
rat data. The skull stripping masks are generated by [10] and evaluated at two
SR scales.

Qualitative results for mouse data are shown in Fig. 7. The segmentation
result of cubic interpolation entirely failed on average. This is potentially due
to the downstream network’s sensitivity to texture shift at the border of the
zero-padding or throughout the image. Nonetheless, both ECLARE and BiDA
correct for this and achieve more accurate brain masks. Interestingly, despite the
less realistic appearance of the BiDA results on the out-of-domain mice data, the
resultant images are more amenable to segmentation than those generated by
ECLARE.
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Fig. 5: Qualitative results from a representative in-domain and out-of-domain
rat going from 1000µm to 200µm (5× scale factor). The red overlay is the skull
stripping mask generated by [10].
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Fig. 6: (a) PSNR and (b) cDSC for the out-of-domain mouse data are shown.
The skull stripping masks are generated by [10] and evaluated on two SR scales.
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Fig. 7: Qualitative results from a representative out-of-domain mouse going from
1000µm to 200µm (5× scale factor). The red overlay is the skull stripping mask
generated by [10]. PSNR was calculated after cropping the boundaries to avoid
artificial metric inflation from zero-padding.

4 Conclusion

In this work, we explored the feasibility of zero-shot super-resolution (SR) in
preclinical imaging using a denoising diffusion null-space model (DDNM). We
introduced Biplanar DDNM Averaging (BiDA), a method leveraging two orthog-
onal 2D diffusion models for volumetric SR, and evaluated its performance across
multiple datasets, including both in-domain and out-of-domain contrast and
species experiments. Our results demonstrated that BiDA effectively preserves
anatomical structure and outperforms traditional interpolation methods in both
pixel-wise reconstruction fidelity and the downstream task performance of skull
stripping. BiDA generally had worse mean PSNR than the ECLARE [25] method
but comparable cDSC results. Notably, BiDA showed strong generalization within
the rat dataset but had worse performance when applied to mouse data. This
suggests species-specific adaptations may be necessary for broader applicability.

While both BiDA and ECLARE represent viable options for SR in preclinical
imaging, some challenges remain. First, the domain shift between species, partic-
ularly in anatomical size and resolution, presents difficulties achieving consistent
performance. Future work should explore techniques to enhance the generalization
of diffusion-based models, including domain adaptation strategies and training
on diverse multi-species datasets. Second, although our approach focuses on 2D
slice-wise SR, a fully volumetric 3D diffusion model could further improve spatial
coherence and reduce artifacts from slice-wise processing. Addressing these chal-
lenges will be crucial for advancing zero-shot SR methods in biomedical imaging,
ultimately facilitating more robust and generalizable preclinical research.
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