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Abstract. Magnetic resonance imaging (MRI) is vital for diagnosing
abdominal and neurological conditions, yet conventional sequential slice
acquisitions favor in-plane over through-plane resolution to minimize
scan time and motion artifacts, leading to anisotropic data and reduced
volumetric accuracy. Existing super-resolution (SR) techniques recon-
struct isotropic images from anisotropic scans but often rely on simulated
downsampling or limited 3D isotropic data, emphasizing through-plane
interpolation rather than preserving full anatomy. We introduce SIM-
PLE, a Simultaneous Multi-Plane Self-Supervised Learning approach
that directly restores isotropic MRI from real-world multi-plane acquisi-
tions via adversarial training. Testing on OASIS-1 brain (n = 416) and
Crohn’s disease abdominal (n = 115) MRI datasets demonstrates SIM-
PLE’s superiority in image fidelity and anatomical detail over state-of-
the-art methods. Notably, SIMPLE achieved lower averaged Kernel In-
ception Distance (KID) scores than SMORE4 in both brain MRI (28.709
vs. 29.295) and abdominal MRI (17.435 vs. 20.724), retained higher-
frequency details as confirmed by Fourier analysis, and was rated 1.5
points higher in the axial plane by radiologists. By improving volumetric
analysis and 3D reconstructions, SIMPLE shows promise for enhancing
diagnostic accuracy in pathologies demanding precise structural visu-
alization. Our source code is publicly available at |https://github.com/
TechnionComputationalMRILab/SIMPLE.

Keywords: Isotropic MRI Restoration - Clinical MRI - Generative Ad-
versarial Neural Networks .

1 Introduction

Magnetic resonance imaging (MRI) is central to medical diagnostics, offering
high-resolution soft-tissue imaging across numerous conditions [G/T8IT0I7]. Yet
achieving such detail often leads to anisotropic data, where differing in-plane
and through-plane resolutions limit diagnostic precision and volumetric analysis
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[BU21]. This stems from extensive 3D “k-space” sampling requirements: higher
resolution prolongs scan times, making it infeasible in busy clinical settings [2].
Patient comfort, motion artifacts, and throughput demands further constrain
acquisition, compelling a trade-off of higher in-plane resolution at the expense
of lower through-plane resolution.

To compromise anisotropy and improve diagnostic accuracy, clinicians often
acquire multiple high-resolution MRI scans in different planes [8]. While this
multi-plane strategy offers a more comprehensive view, partial volume effects and
reduced quality in the slice-selection direction still impair volumetric analysis and
3D reconstructions. Moreover, acquiring additional planes inevitably prolongs
the overall scanning time.

Super-resolution (SR) has emerged as a promising solution by reconstructing
isotropic, high-resolution images from anisotropic scans [I2T7/T9)25]. However,
fully supervised SR requires isotropic ground-truth volumes, which are rarely
feasible: body imaging suffers from respiratory motion, while neuroimaging faces
long acquisition times.

Self-supervised SR methods eliminate the need for explicit HR ground truth
by leveraging the existing anisotropic data — high-resolution (HR) in-plane but
low-resolution (LR) through-plane — to form HR-LR pairs directly from the same
scans. They generally fall into resampling-based and synthesis-based categories.
Resampling-based approaches simulate even lower-resolution images from the
acquired low-resolution (LR) data, then map them back to the original to predict
HR [13]. Synthesis-based methods generate LR images from HR volumes and
train on the resulting HR-LR pairs. For instance, Zhao et al. [27] downsampled
the HR plane of anisotropic scans for their “SMORE” model, while Remedios et
al. [20] introduced “SMORE4” by incorporating a learned point-spread function
(PSF) and averaging two LR planes to form an isotropic volume. Similarly, slice-
to-volume (SVR) [24] and patch-to-volume (PVR) [I] fuse axial, coronal, and
sagittal slices into a 3D isotropic volume, and Liu et al. [16] further improved
resolution by re-slicing and averaging multiple SR reconstructions. Despite their
potential, most self-supervised SR methods rely on synthetic downsampling,
small datasets, or indirect mappings, which can undermine performance. They
also typically emphasize through-plane improvements, overlooking the broader
3D anatomy.

To address these gaps, we propose SIMPLE - a Simultaneous Multi-Plane
Self-Supervised Learning approach that restores isotropic MRI directly from
real-world anisotropic acquisitions without simulated downsampling or single-
plane interpolation. SIMPLE’s adversarial framework preserves anatomical de-
tail across all three dimensions. Validated on large brain (OASIS-1) and ab-
dominal (Crohn’s disease) MRI datasets, SIMPLE cousistently achieves supe-
rior image fidelity, high-frequency preservation, and expert radiologist preference
compared to state-of-the-art methods. By supporting more accurate volumetric
analysis and 3D reconstructions, SIMPLE has the potential to enhance diagnos-
tics for abdominal and neurological pathologies alike.
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2 Method

We present SIMPLE -a Simultaneous Multi-Plane Self-Supervised method for
isotropic super-resolution of MRI volumes acquired with 2D protocols. This ap-
proach leverages an extended Generator—Discriminator framework, as illustrated
in Figure [I} Specifically, we take an anisotropic volume Vay_1s0, apply linear in-
terpolation to obtain a coarse isotropic volume Vi, and subsequently generate
a refined isotropic reconstruction VISO.

During generator training, the output volume is sliced along the coronal,
axial, and sagittal planes. Each plane is then processed by a dedicated dis-
criminator, which uses real anisotropic data (with high in-plane resolution) to
enforce realistic outputs for that plane. This strategy avoids the need for true 3D
isotropic data or an approximate downsampling function. Simultaneously train-
ing multiple discriminators ensures consistent 3D restoration across all planes.
Equation [I] formally defines the model, where GM is the generative module, L
is the interpolation operator and i is the slice index within the isotropic volume:

‘A/ISO = GM(VYI;O) = GM(L(VAH—ISO))
StiReor = Visolis oy 2] = HR(Vi,[i, )
b, :] = HR(VI/so[:7 , ])

s.t: SHRAX = ‘7150[.
= ‘/iso[: :7i] = HR(‘/I/SO[:’ ’7’])

(1)
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2.1 System Architecture

Pre-Processing We first linearly interpolate the anisotropic volume to produce
a coarse isotropic volume, though large slice spacing degrades voxel accuracy.
To handle the high memory demands of processing the entire volume, we then
extract overlapping 3D patches of size 64 x 64 x 64 for subsequent model training.

Networks Architecture We adopt a 3D generator based on 3D U-Net [4]
to transform 64 x 64 x 64 single-channel, low-quality patches into high-quality
counterparts. The number of discriminators depends on available planes (three
for coronal-axial-sagittal or two for coronal-axial), and each operates on 2D
slices extracted from the generator’s 3D output. Following a conditional patch-
discriminator design [I1], both real and synthetic samples contain two channels:
the low-resolution input slice and either the generator’s output (synthetic) or an
authentic high-resolution slice (real).

However, our data consist of anisotropic acquisitions obtained at different
times, often with motion artifacts and mismatched anatomical coverage. Con-
sequently, the additional planes cannot directly serve as real high-resolution
references for the discriminator. To address this, we pre-train a 2D single-image
super-resolution model (ATME [23]) on the anisotropic acquisitions for each
plane and evaluate it on the linearly interpolated low-resolution volume to gen-
erate ‘real’ high-resolution slices in each plane. These synthetic-yet-consistent
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Fig.1: Model Architecture. The framework incorporates a 3D generator and
three (or two, depending on plane availability) discriminators operating in par-
allel. The dashed red volume indicates the linearly interpolated input, while the
blue, green, and orange frames depict high-quality coronal, axial, and sagittal
slices generated by ATME. Red, blue, and yellow dashed arrows indicate sam-
pling along the coronal, axial, and sagittal planes, respectively. Gray dashed
arrows show the ATME flow and green dashed arrows highlight the connections
to consistency loss.
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references replace the original scans in the conditional discriminator, ensuring
matched real-synthetic pairs while circumventing misalignment from multi-plane
acquisitions.

Loss Functions During training, we employ separate objectives for the gen-
erator and discriminators to balance realism and consistency across all planes.
The generator’s total loss equally weights coronal, axial, and sagittal compo-
nents, each consisting of an adversarial term Lg,,, (from the discriminator’s
classification matrix) and a consistency term Ly, (the L1 distance). The dis-
criminators rely solely on the adversarial loss, implemented via a least squares
generative adversarial network (LSGAN). Equations [2[and detail the generator
and discriminator objectives, with x as the input and y as the target.

Lo = L1saan(G, D) = E, |(D(z,G(2)) ~ 1)°] (2)

Lo = Lrsaan(D) = 5Bey (D) — 1] + 5. [(Dle, G@))?] )
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Equation [ represents our total generator loss:

Lo =a [EGADVW + )‘ELlcor] + 5 I:EGADVax + AELI&X] +7 |:£GADVsag + AELlsagi|
(4)

where «, 3, v denote the weights for each plane component and are empirically
set to 0.5.

3 Experiments

3.1 Datasets

Abdomen Dataset. After Institutional Review Board (IRB) approval, we gath-
ered 115 consecutive 2D MRI scans of Crohn’s Disease (CD) patients from a local
hospital, acquired on a GE 3T scanner. Coronal and axial FIESTA sequences
were used, each with 5 mm slice spacing and thickness. The average pixel spacing
is 0.78 mm (coronal) and 0.76 mm (axial).

OASIS-1 Dataset. We also used the publicly available OASIS-1 dataset of
416 brain MRIs from adults with varying cognitive status. Each T1-weighted
sagittal scan features 1.25 mm slice spacing and 1 mm in-plane resolution, plus a
co-registered 3D volume resampled to 1 mm isotropic. We generated anisotropic
2D MRI sequences for each plane by setting a 3 mm slice spacing and preserving
the 1 mm in-plane resolution.

3.2 Experimental Methodology

We compare SIMPLE against three baselines: linear interpolation, SMORE4 [20],
and a method based on Liu et al. [16] that applies ATME-based super-resolution
independently to each plane before averaging the resulting volumes. To ensure a
fair and clinically relevant comparison, we evaluate results on the coronal plane
for the abdomen dataset and the sagittal plane for the brain dataset.

To assess qualitative performance, we analyze multi-view slices in the coro-
nal, axial, and sagittal planes, providing a direct visualization of each method’s
reconstruction. Since the abdomen dataset lacks true 3D isotropic volumes, no
ground-truth slices are available for direct reference. To further evaluate volu-
metric consistency, we generate straight multi-planar reconstructions (MPRs) of
the small intestine using radiologist-annotated Terminal Ileum centerlines [14].
Additionally, we apply 2D Fourier transforms to slices from planes other than
the primary evaluation plane to assess high-frequency detail preservation, such
as texture and edge sharpness. To incorporate clinical validation, a senior ra-
diologist, blinded to the methods, scores slices from 10 abdomen cases across
coronal, axial, and sagittal views using a 1-5 Likert scale, where 1 represents
non-diagnostic quality and 5 indicates excellent visualization.

For quantitative evaluation, we employ distribution-based metrics, as PSNR
and SSIM have been shown to be unreliable for GAN-based medical imaging [26],
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and the absence of ground-truth references in the abdomen dataset limits the
applicability of full-reference metrics. We compute Fréchet Inception Distance
(FID) [1522], Kernel Inception Distance (KID), and the L1 distance between
Inception Scores (IS) [3]. For all metrics, lower scores correspond to better per-
formance. For the abdomen dataset, scores are computed separately for coronal
and axial slices and then averaged. For the brain dataset, KID scores are calcu-
lated across 2D slices in each plane and averaged across cases to provide a 3D
evaluation.

4 Results

Multi View Slices: Figure |2| compares isotropic abdominal MRI volumes re-
constructed by all methods across the three primary planes. Interpolation and
ATME enhance image quality primarily in the plane of their original anisotropic
acquisition but provide limited improvement in the perpendicular planes. STM-
PLE, SMORE4, and averaged ATMEs demonstrate better resolution across all
planes, yet SIMPLE achieves the most consistent enhancement, particularly in
planes perpendicular to the acquisition plane, where it sharpens edges and im-
proves contrast more effectively.

In the acquisition plane, SIMPLE and SMOREA4 yield similar results, though

minor differences in organ location are observed, with SMORE4 being more sen-
sitive to organ shadows and noise. While SIMPLE has no explicit constraints in
the sagittal plane for the abdomen dataset, it still produces improved resolution.
For the brain dataset, the differences between SIMPLE and other methods are
less pronounced than in the abdomen dataset due to the smaller slice spacing and
minimal organ motion, suggesting that SIMPLE’s advantages are most evident
in cases with greater through-plane anisotropy.
Fourier Domain: Figure 3| presents the Fourier domain representation of axial
and coronal slices from isotropic volumes reconstructed by all methods. SIM-
PLE’s Fourier transform closely matches that of natural images, demonstrating
a well-balanced distribution of high and low frequencies. In contrast, interpola-
tion introduces visible horizontal stripes in the axial abdominal slices, indicative
of retained anisotropic resolution. Similarly, SMORE4 and averaged ATMEs ex-
hibit a prominent horizontal stripe near the center, suggesting residual artifacts
from the original anisotropic acquisition.

All methods display vertical and horizontal lines at the center, likely result-
ing from zero-padding effects. In the brain dataset, the coronal and axial slices
generated by competing methods show a noticeable reduction in high-frequency
components, deviating further from the original Fourier domain. These results
indicate that SIMPLE better preserves fine structural details, particularly in
anisotropic cases, reinforcing its ability to generate more natural and high-fidelity
isotropic reconstructions.

Straight Multi Planar Reconstruction (MPR): Figure presents straight
MPR reconstructions from five volumes: the original anisotropic acquisition
and isotropic reconstructions generated by all methods. SIMPLE produces the
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Fig. 2: Multi-plane comparison of isotropic slices generated by SIMPLE versus
five baselines: (1) linear interpolation from an anisotropic axial volume, (2) linear
interpolation from an anisotropic coronal volume, (3) ATME trained on the
axial volume, (4) ATME trained on the coronal volume, (5) averaged ATME
across both planes, (6) SMORE4, and (7) SIMPLE. All methods except (1) were
applied to an anisotropic coronal volume. SIMPLE yields sharper details and
more consistent 3D structures, highlighting its advantage over existing methods.

smoothest and sharpest reconstructions, reducing discontinuities that arise in
both the anisotropic volume and competing isotropic methods. These disconti-
nuities, observed in SMORE4 and averaged ATMEs, stem from larger inter-slice
gaps and insufficient through-plane reconstruction. SIMPLE’s ability to generate
more coherent and continuous structures highlights its effectiveness in reducing
slice-wise inconsistencies and better preserving anatomical integrity in 3D volu-
metric reconstructions.

Likert Scale: Table[2]displays the Likert scale rankings across all planes. Linear
interpolation performed the worst, with an average score of approximately 1.
SIMPLE and SMORE4 achieved similarly high scores in the coronal plane and
lower scores in the sagittal plane, though SIMPLE ranked slightly higher in
both. In the axial plane, SIMPLE outperformed SMORE4 by 1.5 points on
average, indicating better anatomical alignment and fewer artifacts, essential for
diagnostic reliability.

Distribution-Based Metrics: Tables [3] and [Il summarize the metric scores
for each method on the brain and abdomen datasets. In the abdomen dataset,
SIMPLE scores lower than interpolation in both planes and achieves lower scores
than SMORE4 and averaged ATMESs in the axial plane, resulting in the lowest
overall average scores among all methods. By contrast, SMORE4 and averaged
ATMEs perform well in the coronal plane but degrade more significantly in
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case 1

Fig.4: Straight MPR of the
terminal ileum in Crohn’s dis-
ease patients from coronal vol-
umes: (a) anisotropic volume,
(b) linear interpolation, (c) av-
eraged ATMEs, (d) SMOREA4,
Fig. 3: Fourier representation of axial and and (e) SIMPLE. SIMPLE pro-
coronal slices reconstructed by SIMPLE and vides smoother, sharper recon-
other methods from anisotropic volumes, structions, illustrating its po-
compared to a high-resolution reference. tential for improved clinical as-
SIMPLE preserves high-frequency details, sessment of Crohn’s disease.
indicating close fidelity to real images.

Table 1: Distribution-based metrics for the Table 2: Average and standard de-
abdomen dataset, listing plane-specific re- viation of Likert scale rankings for
sults (coronal, axial) and the overall average the three main planes across com-

across both planes. peting methods.
Interpolation] SMORE4 | Avg. ATME SIMPLE Interpolation| SMORE4 SIMPLE
Coronal] Azial | Coronal| Awial | Coronal] Azial | Coronal] Azial Awzial 1 2.182 & 1.168/3.727 £ 0.786
KID|_ 3520 [48.185] 0.894 |40.554] 0639 [37.213 2.383 [32.487 Coronal| 1.231 £ 0.438 [4.231 % 0.438/ 4.615 * 0.65
26.007 20.724 18.926 17.435 Sagittal 1 1.5 + 0.527 | 2.2 + 0.789
Is | 0-031 [0.023] 0.001 [0.033] 0.005 [0.022] 0.003 [0.006
0.027 0.017 0.013 0.004
FID | 17292 [28.964] 14.897 [23.938] 15.387 [22.969] 16.834 [21.316
23.128 19.417 19.178 19.075

the axial plane, leading to greater inter-plane variability. For the brain dataset,
SIMPLE consistently yields significantly lower KID scores than interpolation in
both 2D and 3D and slightly outperforms the other methods, especially in the
coronal and axial planes.
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Table 3: KID scores for the brain dataset, showing the average KID per plane

and the overall mean across all planes, aggregated by case.
Interpolation SMORE4 Avg. ATME SIMPLE
KID|Coronal| Azial|Sagittal| Coronal| Azial| Sagittal| Coronal| Axial|Sagittal | Coronal| Axial | Sagittal
2D | 0.89 |0.964| 0.386 0.47 [0.495| 0.354 | 0.418 [0.455| 0.241 | 0.396 |0.422| 0.231
3D 30.425 29.295 29.36 28.709

5 Conclusion

We presented SIMPLE, a self-supervised simultaneous multi-plane learning ap-
proach for isotropic MRI reconstruction from anisotropic clinical acquisitions.
By leveraging real-world multi-plane data and adversarial training, SIMPLE
preserves full anatomical structure without relying on simulated downsampling.
Extensive experiments on brain and abdominal MRI datasets demonstrate its
superiority over state-of-the-art methods in image fidelity, high-frequency de-
tail preservation, and radiologist evaluations. These results highlight SIMPLE’s
potential to enhance volumetric analysis and improve diagnostic accuracy for
abdominal and neurological pathologies, making it a promising solution for high-
resolution MRI reconstruction in clinical practice.
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