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Abstract. High-risk plaque (HRP) detected by coronary CT angiog-
raphy (CTA) is associated with increased risks of major adverse car-
diovascular events such as heart attack. Current identification of HRP
characteristics involves labor-intensive segmentation of plaques, requir-
ing substantial time and expert knowledge. In this work, we propose a
novel coronary cross-sectional Vision Transformer (ViT) framework that
bypasses the need for explicit segmentation by directly predicting the
presence of HRP. Our approach extracts cross-sectional slices along the
coronary centerline, ensuring that the model focuses on the artery. By
leveraging the standard patch-based input of ViT, we capture not only
the coronary cross-section itself but also surrounding contextual informa-
tion (e.g., adipose tissue). Furthermore, we incorporate multiple levels of
detail by combining the cross-sections from proximal and distal positions
with their corresponding CTA axial planes, forming a comprehensive
cross-sectional representation. We also embedded the actual 3D position
of each cross-section into the positional encoding of the Transformer to
enhance spatial awareness. Experimental results of 3,068 coronary arter-
ies demonstrate that our method outperforms conventional approaches,
highlighting its potential to optimize clinical decision-making in the care
of coronary artery diseases1.

Keywords: Vision Transformer (ViT) · Coronary CT Angiography (CTA)
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1 Introduction

Coronary artery disease (CAD), primarily caused by atherosclerosis, is the lead-
ing cause of mortality and morbidity worldwide. Coronary computed tomogra-
phy angiography (CTA) has emerged as a first-line imaging modality to assess
coronary atherosclerotic plaques and guide CAD treatment. Independent of con-
ventional cardiovascular risk factors, CTA-depicted high-risk plaque (HRP) fea-
tures are associated with an increased risk of major adverse cardiovascular events
(MACEs), such as death and myocardial infarction. However, clinical transla-
tion of CTA HRP-based risk stratification is limited due to technical challenges:
(a) Manual identification of HRP requires substantial expertise and is prone to
human error [1]; (b) Atherosclerotic plaques can be focal or diffuse, complicating
lesion alignment and HRP localization; (c) The small size of coronary arteries
compared to the entire CTA volume makes conventional deep learning pipelines
computationally inefficient.

Both radiomics and deep learning approaches have been applied to identify
HRPs. The radiomics approach typically utilizes handcrafted histogram and tex-
ture features, as well as pre-defined plaque characteristics such as stenosis and
plaque burden. These features are then fed into a statistical learning framework
for variable selection and classification. Radiomics has been shown to outperform
conventional clinical features in the detection of the napkin ring sign [2]. Using
the SCOT-HEART dataset, eigen radiomics were found to add predictive value
for future infarctions [3].

The radiomics approach is computationally less demanding, but its pre-
defined features are highly dependent on vendors and scan settings. Further-
more, it requires a separate segmentation pipeline for the lumen and plaque
wall, which further affects the performance and robustness of the analysis [4].
Recently, deep learning approaches have been explored to mitigate these draw-
backs. For instance, a study used a hierarchical convolutional long short-term
memory (ConvLSTM) network to segment plaque components and calculate
plaque characteristics [5]. Another pipeline, Coronary R-CNN, was developed
for automated plaque analysis. Inspired by Faster R-CNN, it includes an ob-
ject detection module to localize the diseased segment and a multi-head analysis
module to calculate stenosis [6]. However, there is limited work on deep learn-
ing approaches for HRP features, possibly due to previous reliance on object
detection.

In this work, we propose a novel end-to-end approach for classifying HRPs
by directly analyzing cross-sectional slices along the coronary centerline. Our
method classifies HRP collectively, consistent with clinical studies [7] linking
aggregated HRP burden to increased MACE risk. This eliminates the need for
labor-intensive plaque or vessel wall segmentation, improving scalability. Our
method leverages the patch-based architecture of Vision Transformers (ViTs),
treating each cross-section as a patch to preserve anatomical continuity while
capturing localized plaque features and contextual relationships across slices.
We also fuse multi-scale representations by combining proximal and distal cross-
sectional planes with a coronary-tailored ConvNeXt block. This enhances the
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model’s ability to capture diffuse plaque patterns, while the U-Net bottleneck in-
tegrates comprehensive cross-sectional information. Furthermore, we embed the
3D positional coordinates of each cross-section into the transformer’s positional
encoding, improving spatial awareness. Our proposed framework, ViTAL-CT
(Vision Transformers for High-Risk Plaque Classification in Coronary CTA),
eliminates the need for manual annotations and outperforms conventional 2D/3D
CNN methods. Our key contributions are:

– The first segmentation-free ViT framework for HRP classification, analyzing
centerline-aligned cross-sections directly, tailored for CTA.

– A hybrid multi-scale representation combining proximal/distal cross-sections,
axial context, and 3D geometry to improve sensitivity to diffuse plaques.

– Large-scale validation on 3,068 coronary arteries, demonstrating state-of-
the-art performance for HRP detection.

2 Methodology

Our proposed ViTAL-CT framework integrates a ViT, a ConvNeXt block, and
a U-Net bottleneck to classify HRPs in coronary CTA (Fig. 1). This hybrid
architecture processes three complementary input streams to capture both local
and global features of coronary plaques:

– Cross-Section Stream: A grayscale 2D cross-section centered on the coro-
nary artery, providing localized information of the region of interest.

– Multi-Slice Context Stream: A coronary-tailored ConvNeXt block ap-
plied to 9 adjacent slices (spanning proximal and distal slices) to capture
longitudinal plaque morphology and improve contextual understanding.

– Global Context Stream: A U-Net bottleneck layer that encodes the overall
axial plane context around the coronary artery, providing comprehensive
spatial information.

The use of global and multi-slice contexts is intended to mirror clinical rea-
soning, in which plaques—such as positive remodeling, soft plaque, and mixed
composition—require examining both the proximal and distal segments of the
artery. All above streams are fused into a unified 3-channel input, where each
ViT patch token represents a coronary cross-section enriched with both local
(from the cross-section) and global (from multi-slice and axial context) infor-
mation, extracted features from the same coronary location. Additionally, we
embed 3D positional coordinates into the Transformer’s positional encoding to
ensure spatial awareness across slices. Coronary patch-specific augmentation and
masking techniques are also adapted to further improve model performance [8].
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Fig. 1: ViTAL-CT framework. Three parallel streams process the central cross-
sections, adjacent slices (ConvNeXt) (a), and axial contexts (UNet) (b). These
streams are fused into 3-channel tokens with 3D positional embeddings. A ViT
backbone (c) processes the tokens to predict high-risk plaque, guided by position-
aware self-attention.

2.1 Coronary-tailored ConvNeXt block for Multi-Slice Context

To better integrate the longitudinal plaque morphology in HRP identification
and improve the model’s understanding of context, each 2D coronary cross-
sectional slice is concatenated with its 8 adjacent slices to form a new patch, de-
noted Pcross ∈ RH×W , which contains multilayer semantic information. Inspired
by ConvNeXt [9], we proposed a coronary-tailored ConvNeXt block (CTCB)
to reduce the dimensionality of Pcross and extract features with minimal com-
putational resource consumption. The CTCB first performs dimensionality re-
duction using a 3 × 3 convolution with a stride of 3, and padding of 1. Given
the tubular structure of the coronary arteries oriented along the tangential axis,
an anisotropic depth-wise convolution with a kernel size of 7 × 3 is followed in
CTCB to emphasize the anisotropic nature of the plaque. A vessel-aware atten-
tion is also applied to amplify the difference between calcified and low-attenuated
regions of the plaque. Finally, a residual connection is adopted to keep abundant
context information from the early layers [10]. After dimension reduction, the D

layers of the CTCB outputs, denoted as PMSC ∈ RH
3 ×W

3 , are then ordered from
proximal to distal to obtain multilayer context channels for ViT input with a
size of (

√
D× H

3 ,
√
D× W

3 ). For coronary CTA, H = W = 48 and D = 196 were
used.
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2.2 U-Net for Global Context

To capture comprehensive spatial information from the axial plane, we trained
a U-Net [11] on 400 manually segmented arteries as a feature extractor, among
which 320 arteries were used for training and 80 for validation. The arteries
were selected at the patient level to avoid leakage. For each artery, 10 slices were
sampled at equal distances to be included in the process. Testing was performed
separately on all slices on 4 additional arteries.

The U-Net structure consists of an encoder path with five downsampling
blocks and the corresponding decoder blocks with skip connections. Each en-
coder block comprises a max-pooling operation for downsampling, followed by
two convolutional layers with ReLU activation. We also employed batch normal-
ization and a dropout rate of 0.1 to prevent overfitting.

The bottleneck is designed to have a size of 16×16×256, whose feature is then
extracted by adaptive pooling from each channel and used as one of the input
streams for the ViT model, as a compact representation of the global context
for HRP identification. In our experiment, the encoder of a U-Net of testing dice
score 0.72 was used for the static feature extraction process.

2.3 Vision Transformer & Positional Embedding

For classification, we use a ViT base model with a patch size of 16, an embedding
dimension of 768, a depth of 12, and 12 attention heads pre-trained on ImageNet-
21k [12]. Low-rank adaptation (LoRA) is applied to avoid overfitting from fine-
tuning all parameters [13]. The Transformer architecture allows for long-range
dependency which is more suitable for atherosclerotic plaque assessment, as the
lesions are usually diffuse. The 16 × 16 patch, with each pixel corresponding
to 0.35 mm, sufficiently covers the average coronary diameter of approximately
3.5-4 mm. It also captures surrounding contextual information such as adipose
tissue, an important indicator of coronary inflammation [14]. In the positional
encoding, we further incorporate the absolute spatial location information of
the coronary artery segment, centering 4 slices proximal and distal around the
cross-section of interest, to provide not only the spatial location but also the
local geometry.

2.4 Augmentation

To enhance model robustness and address the limited availability of coronary
CTA data, we employ coronary-specific augmentations that preserve anatomi-
cal integrity while introducing controlled variations. Augmentations are applied
across entire arterial structures to maintain spatial consistency across slices [15].

– Spatial Transformations:
• Random translations (±2 pixels) along the height and width axes, or-

thogonal to the centerline, to simulate minor positional shifts.
• Selective flipping along anatomical axes (height, width, and diagonal) to

introduce plausible variations in vessel orientation.
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These transformations promote invariance to minor anatomical differences
while preserving the core vascular structure.

– Rotational Augmentation: Since coronary arteries can appear in diverse
orientations, we apply random in-plane rotations of up to 90 degrees along
the vessel’s longitudinal axis. This enhances the model’s ability to generalize
across different imaging perspectives.

– Masked Region Learning: To encourage robust feature learning, we ran-
domly mask 20% of coronary cross-sections, following self-supervised learn-
ing paradigms such as Masked Autoencoders (MAE) and Masked Language
Modeling (MLM) [8,16]. This forces the model to infer missing structural de-
tails, improving contextual understanding and resilience to incomplete imag-
ing data.

All augmentations are calibrated to ensure clinical validity while introducing
sufficient variability to enhance model generalization.

3 Experiments and Results

3.1 Dataset and Experimental Setup

A total of 1,060 patients from the SCOT-HEART study [17] were included.
From each case, three main coronary arteries (RCA, LAD, and LCX), consisting
of proximal, middle, and distal segments (for a total of 3,068 segments), were
extracted. An artery is defined to contain high-risk plaque when any plaque
contains one or more of the following characteristics in the proximal or middle
segment: positive remodeling, low-attenuation plaque, spotty calcification, or
napkin-ring sign [7]. Overall, 675 diseased arteries were identified as having high-
risk plaque.Coronary cross-sections were generated along the vessel centerline at
0.5mm intervals, preserving the same in-plane resolution as the original CTA
data. Figure 2 shows an example of an LAD containing high-risk plaque, along
with illustrations of cross-sections and augmented inputs.

The dataset was split into training (60%), validation (20%), and test (20%)
sets. All dataset splits were performed at the patient level to prevent data leak-
age across training, validation, and test sets. Consequently, other models for
comparison and ablation are evaluated on the exact same patient set. Stratified
sampling and coronary-specific data augmentation were employed to maintain a
balanced class distribution during training. All experiments were conducted us-
ing PyTorch on an NVIDIA RTX 4090 (24 GB). We used the AdamW optimizer
with a batch size of 32 and an initial learning rate of 0.0001. The F1 score was
our primary metric of interest so the best model was chosen based on the highest
F1 score in validation. We also reported precision, sensitivity (recall), and area
under the receiver operating characteristic curve (AUC).

3.2 Comparison with Other Methods

We compared our proposed model with various ViT configurations of different
sizes, as well as with convolution-based ResNet50 models, clinically popular mod-
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Fig. 2: Example of a high-risk plaque (spotty calcification). (a) Curved multi-
planar reconstruction with the plaque indicated by an arrowhead. (b) Coronary
cross-sections. (c) Cross-sections with augmentations. (d) Cross-sections with
masking.

els in coronary CT studies [18,19], using 2D cross-sections and 3D straightened
multiplanar reconstructions (Table 1) [10,12].

In general, larger ViT models tended to perform worse on this relatively
small dataset, reflecting the known data-hungry nature of Transformers. No-
tably, incorporating LoRA for parameter-efficient fine-tuning on medical images
yielded performance gains. The ViT Base & LoRA achieved a 6% increase in
AUC compared to ViT Tiny. Meanwhile, ResNet50 2D outperformed all stan-
dard ViT variants, likely due to the importance of local feature extraction in
coronary cross-sections, aligning with the popularity of CNN-based approaches
in medical imaging.

By integrating a ConvNeXt block for local feature enhancement, our ViTAL-
CT model surpassed all other methods, yielding a 7% improvement in AUC and
a 4% improvement in F1 score over the strongest baseline. This suggests that
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combining convolution-based local feature extraction with ViT’s global context
captures both fine-grained plaque textures and broader anatomical variations in
coronary arteries, yielding a better trade-off between precision and recall.

Method AUC Precision Recall F1

ViT Tiny 0.755 0.678 0.710 0.690
ViT Small 0.743 0.664 0.701 0.675
ViT Base 0.742 0.658 0.689 0.668
ViT Base & LoRA 0.799 0.685 0.735 0.698
ResNet50 2D 0.806 0.721 0.697 0.707
ResNet50 3D 0.774 0.699 0.707 0.703
ViTAL-CT (Ours) 0.818 0.735 0.771 0.749

Table 1: Performance comparison of four ViT-based models (varying sizes and
LoRA usage) and ResNet50 models (2D vs. 3D cross-sections). Our ViTAL-CT
model achieves the highest scores across all metrics.

3.3 Ablation Experiments

Ablation results (Table 2) validate that each module, including U-Net global
context, positional embedding, ConvNeXt multi-slice stream, and data augmen-
tation, contributes uniquely to performance, supporting our hybrid architecture
design.

Method AUC Precision Recall F1

Without U-Net 0.758 0.692 0.705 0.698
Using Residual Block 0.685 0.620 0.620 0.620
Without Positional Embedding 0.775 0.694 0.732 0.707
Without Augmentation 0.737 0.649 0.680 0.658
ViTAL-CT (Ours) 0.818 0.735 0.771 0.749

Table 2: Ablation study of ViTAL-CT components. Removing the ConvNeXt
block, global U-Net features, or positional embeddings each leads to a measurable
reduction in overall performance.

Replacing the ConvNeXt block with a standard residual block causes roughly
a 13% decrease in both AUC and F1, highlighting the importance of the Con-
vNeXt architecture in capturing coronary-specific details and fine-grained plaque
textures. The data-hungry nature of the Transformer architecture and the large
variations of plaque and vessel imaging in real-world clinical settings can be ob-
served by the drop in performance by 10% in AUC and 12% in F1 when there is
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no augmentation. Removing the global features from the U-Net bottleneck also
has a clear impact, with decreases of 6% in AUC and 5% in F1. This likely comes
from losing broader context regarding other arterial segments, which is crucial
given the diffuse and systemic nature of atherosclerosis. Finally, removing the
3D spatial positional embedding yields a smaller yet noticeable drop of about
4% in both AUC and F1, suggesting that spatial awareness still provides a bene-
ficial signal, even though the limited size of this coronary dataset constrains the
network’s ability to learn more sophisticated 3D geometric relationships.

4 Conclusion

In this paper, we propose a novel segmentation-free and multi-scale ViT frame-
work tailored for coronary CTA plaque assessment. Evaluation on 3,068 coronary
arteries from 1,060 patients demonstrated that the presented method achieved
better results than the state-of-the-art methods. Future work includes better
incorporating the arterial positional embeddings, adding non-imaging clinical
features, and validating the pipeline in additional datasets.
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