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Abstract. The development of a computational framework that can infer large-
scale brain-wide effective connectivity (EC) based on resting-state functional
MRI (rs-fMRI) represents a grand challenge to computational neuroimaging. To-
wards the goal of estimating full-scale, whole-brain EC, we developed a new
computational framework termed Large-scale nEural Model Inversion (LEMI)
by utilizing a linear neural mass model with an efficient Kalman-filter based gra-
dient descent algorithm. Key advantages of LEMI include fast estimation of both
intra-regional and inter-regional connection strengths for large-scale networks,
allowing exploration of both intrinsic and external mechanisms in neuroscience
problems. Using ground-truth simulations, we demonstrated that LEMI can accu-
rately and efficiently recover model parameters in a large network (100 regions)
within 90 minutes. We then applied the LEMI model to an empirical rs-fMRI
dataset from the ADNI database and identified widespread reduced excitation-
inhibition (E-I) ratio in patients with Alzheimer’s disease (AD). Overall, LEMI
provides an efficient and accurate computational framework to estimate large-
scale EC and whole-brain E-I balance based on non-invasive neuroimaging data.

Keywords: Neural Mass Model · Effective Connectivity · Optimization.

1 Introduction

The advancement of non-invasive neuroimaging techniques, such as functional mag-
netic resonance imaging (fMRI), has enabled the development of sophisticated tools
and models to elucidate the organizational principles of the human brain at an extraor-
dinary level of detail. Computational connectomics has played a particularly important
role in mapping the functional architecture of large-scale brain networks in health and
potential alterations in diseases [4,25]. There are two major types of analysis approaches
in the field of fMRI connectome including functional connectivity (FC) and effective
connectivity (EC) [12]. FC represents the statistical dependency among fMRI signals
which can be either undirected or directed [11]. While undirected FC can be computed
using simple correlation analyses (e.g., Pearson’s correlation), directed FC is usually
computed by more sophisticated statistical approaches such as Granger causality [11].
Despite the widespread use and great success of FC in characterizing the functional
organization of large brain-wide networks in both task and resting-state conditions, its
clinical application is still limited in that it does not offers a neurophysiological account
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of the aberrant neural process in diseases. Effective connectivity, in contrast, character-
izes the directed causal influence among neuronal populations with biologically plau-
sible neuronal models [9,11], thus able to offer neural-based mechanistic account of
cognitive function and dysfunction [26].

However, estimating EC in large-scale brain networks is highly challenging due to
complex computation (e.g., integration of differential equations and nonlinear optimiza-
tion). As a predominant method to compute EC, dynamic causal modeling (DCM) is
restricted to relatively small networks (usually on the order of 10 regions) [9], though
two new variants of DCM (spectral DCM and regression DCM) have potential for brain-
wide application [13,21]. In addition, DCM-based models for fMRI primarily use sim-
ple one-state model for generating neural activity, which restricts their biological rele-
vance. Though the latest DCM incorporates a hierarchical neural mass model (NMM)
of neuronal dynamics, it is currently applied to task-based fMRI only [10].

Two recent developments in EC models precisely address the limitations of DCM.
The first framework, termed Multiscale Neural Model Inversion (MNMI), aims to con-
nect mesoscale circuit interactions with macroscale network connectivity and iden-
tify both intra-regional and inter-regional EC based on resting-state fMRI (rs-fMRI)
[18,19]. The biological realism and model flexibility make MNMI an attractive frame-
work to estimate EC in biophysical networks. However, the size of the MNMI model
is designed to be relatively small (< 50 brain regions) due to heavy computational bur-
den, whereas neuropsychiatric disorders typically involve much larger networks [4,20].
Concurrently, Singh et al. [24] developed a new modeling approach termed Mesoscale
Individualized Neurodynamic (MINDy) modeling which fits nonlinear dynamical sys-
tems models directly to rs-fMRI data. Notably, the MINDy framework is able to esti-
mate data-driven network models with hundreds of interacting brain regions in just a
few minutes per subject, making it ideal for large-scale network construction and big
dataset application. Nevertheless, the model includes only one neural population per
region and thus cannot model intra-regional neural interactions.

In this study, we attempt to combine the advantages of MNMI and MINDy and
develop an accurate and efficient computational framework for EC estimation. We term
this new framework Large-scale nEural Model Inversion (LEMI). Simulation shows
that LEMI can accurately estimate local recurrent excitation and inhibition strengths
as well as inter-regional EC in large-scale networks (up to 100 regions) in just tens
of minutes on a standard computer. After validation, we applied the LEMI model to
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and identified large-
scale E-I imbalance in both mild cognitive impairment (MCI) and AD patients. Overall,
the LEMI framework holds the promise to estimate large-scale EC and E-I balance
for the identification of potential biomarkers and pathophysiological mechanisms in
neurological and psychiatric disorders.

2 Methods

2.1 Overview of the LEMI Framework

In the LEMI framework (Fig. 1A), each network node contains two mutually coupled
excitatory (E) and inhibitory (I) neural populations. The E neural population excites
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Fig. 1. Overview of the LEMI framework. (A) LEMI diagram. (B) Optimization algorithm.

the I neural population while receiving feedback inhibition from the latter. The E neural
population receives self-excitation and long-range inputs from other brain regions. First,
structural connectivity from diffusion MRI (dMRI) is used to construct a sparse net-
work by removing weak connections. Second, empirical blood-oxygen-level-dependent
(BOLD) signals are Wiener-deconvolved [24] to obtain composite neural activity y(t);
we choose Wiener Deconvolution due to its optimal noise reduction and signal restora-
tion [28]. Third, Kalman filter is applied to estimate neural activity x(t) [23] and the
predicted error of the composite neural activity is calculated. Lastly, gradient descent
algorithm is used to optimize model parameters by minimizing the prediction error.

2.2 The Neural Mass Model

The neural network dynamics are described by a discrete linearized NMM of Wilson-
Cowan type [14,29]:

x(t) = Ax(t− 1) + ω(t), (1)

y(t) = Hx(t) + v(t), (2)

x =

[
E
I

]
,W =

[
WRE WIE
WEI WII

]
, A = (1− α∆t)U +W∆t, (3)

where E and I are the mean neural activity in the vector form (M × 1), ∆t is the
sampling TR, α is the decay rate, U is an identity matrix, H is the observation ma-
trix which maps the neural activity into the deconvolved BOLD, y(t) is the compos-
ite neural activity (i.e., deconvolved BOLD) (y = 2/3E + 1/3I, [19]), and ω(t) and
v(t)are Gaussian white noise. WRE encodes interactions among E neural populations
(WRE = WRR + WEE) where WRR is the inter-regional EC (with zero diagonal), and
WEE, WEI, WIE and WII are diagonal matrices (M × M) representing the local E → E,
E → I, I → E and I → I connection strengths, respectively.
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2.3 Estimation of Neural Activity

The neural activity x(t) is estimated using Kalman filter based on the deconvolved
BOLD signal y(t) (Fig. 1A). Assuming ω(t) ∼ N (0, Q) and v(t) ∼ N (0, R), the
estimation process is formulated as [17]:

Prediction:
x̂t|t−1 = Ax̂t−1 (4)

Pt|t−1 = APt−1A
T +Q (5)

Update:
Kk = Pt|t−1H

T (HPt|t−1H
T +R)−1 (6)

x̂t = x̂t|t−1 +Kk(y(t)−Hx̂t|t−1) (7)

Pt = (I −KkH)Pt|t−1 (8)

2.4 Estimation of Neural Model Parameters

Connection parameters (W ) are optimized by minimizing the following cost function:

J =
1

L

t0+L∑
t=t0

M∑
k=1

(yk(t)− ŷk(t))
2 (9)

where L is the number of samples in a randomly selected time segment, M is the
number of regions, and ŷ(t) is the estimate of y(t) (ŷ(t) = Hx̂(t)). The cost function is
minimized using Nesterov-Accelerated Adaptive Moment Estimation (NADAM, [6]), a
stochastic gradient-descent algorithm with fast convergence and over-fitting prevention.
The NADAM algorithm iteratively updates parameters as follows [24]:

mk+1 = µmk + (1− µ)
∂J

∂Wk
, nk+1 = νnk + (1− ν)

∂J2

∂Wk

(10)

Wk+1 = Wk − η

1−µ
1−µk+1

∂J
∂Wk

+ µ
1−µk+2mk+1√

nk+1

1−νk+1 + ε
(11)

where µ and ν are hyperparameters controlling the moving average gradients and squared
gradients, respectively. The hyperparameter ε serves to stabilize the learning rate and
avoid zero division. The gradient of J with respect Wij (1 ≤ i ≤ N , 1 ≤ j ≤ N ,
N = 2M ) is computed as:

∂J

∂Wij
=

2

L

t0+L∑
t=t0

M∑
k=1

(yk(t)− ŷk(t))Hkixj(t− 1)∆t (12)

The whole optimization algorithm starts with initializing W (Fig. 1B). We will then
randomly select an initial time t0 and perform fixed-length Kalman Filter to estimate
x(t) based on W . Next, error gradient is calculated and W is updated according to
NADAM. The updated W is then fed to the Kalman Filter to start off the next iteration
until convergence.
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2.5 Ground-truth Simulations

To evaluate the accuracy and efficiency of the LEMI framework, we generated 30
synthetic subjects by randomly selecting model parameters from uniform distribution:
WRR ∼ U(-0.02, 0.02), WEE ∼ U(0.05, 0.2), WEI ∼ U(0.05, 0.2), WIE ∼ U(0.05, 0.5).
We assumed WEI to be fixed and set WII to be zero as the effect of WEI can be ac-
counted by WIE [18] and the I-I inhibition is much weaker than the I-E inhibition [22].
We randomly selected 10% inter-regional connections for sparse network construction.
The ground-truth and composite neural activity was generated using Eqns. 1 - 3 with
ω(t) ∼ N (0, 0.005) and v(t) ∼ N (0, 0.01) and we simulated 9000 seconds of neural
activity (TR = 1 sec). The composite neural activity was then convolved with a canoni-
cal hemodynamic response function (HRF) [8] to generate synthetic BOLD time series.
We chose the canonical HRF due to its general applicability in fMRI modeling stud-
ies [13,24]. We run the LEMI for 20,000 iterations for good convergence and for each
iteration, 20 temporal samples were selected (L = 20).

2.6 Empirical Dataset Application

After ground-truth validation, we applied the LEMI model to an empirical rs-fMRI
dataset obtained from the ADNI database (http://adni.loni.usc.edu/). The
dataset included 48 healthy normal control (NC) subjects (26/22 males/females, 73.4 ±
6.5 years), 48 subjects with MCI (31/17 males/females, 73.9 ± 10 years), and 48 pa-
tients with AD (27/21 males/females, 73.5 ± 8.5 years) who are age (p = 0.95, one-way
ANOVA) and gender (p = 0.55, one-way ANOVA) matched. We used the fMRI dataset
from a previous study where we selected the same number of age- and gender- matched
NC and MCI subjects as AD subjects [18]. The 7-min fMRI data (TR = 3 sec) were pro-
cessed with a standard pipeline [31] using AFNI [3]. Regional averaged BOLD rs-fMRI
time series were extracted according to the Desikan-Killiany (DK) atlas [5] with 84 re-
gions of interest (ROIs) including subcortical components. To reduce computational
burden and focus on the networks that are most affected in AD [33], we selected 46
ROIs from the default mode (DMN), salience (SAL), frontoparietal control (FPC) and
limbic (LIM) networks based on Yeo’s seven network definition [32]. Structural con-
nectivity (SC) was computed using probabilistic tractography based on the dMRI data
consisting of 100 unrelated subjects from the WU-Minn Human Connectome Project
(HCP) [7] because dMRI data was not available for all ADNI subjects. The dMRI data
were preprocessed using the HCP protocol [15] and we conducted whole-brain tractog-
raphy using asymmetry spectrum imaging (ASI) fiber tracking [30]. The SC matrix with
46 ROIs was extracted from the full SC matrix and averaged among the 100 subjects.
We selected the strongest 10% SC connections for network modeling [18]; the results
remained qualitatively similar with higher SC densities. For comparison, we applied
regression DCM (rDCM) [13] to the ADNI data to estimate EC among 46 ROIs. We
chose rDCM since it allows efficient estimation of whole-brain EC.

2.7 Statistical Analysis

We focused on E-I balance comparison among NC, MCI and AD subjects since stud-
ies suggest E-I imbalance plays an important role in AD pathophysiology [2,27]. For

http://adni.loni.usc.edu/
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Fig. 2. Estimation results of one synthetic subject. (A) Estimation of E neural activity in one
ROI using Kalman filter. (B) Prediction of deconvolved BOLD signal in one ROI. (C) Parameter
estimation error computed as the norm of the difference between ground-truth parameters and
estimated parameters. (D) Scatter plot of ground-truth WRR and estimated WRR. (E) Scatter plot
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A B C

Fig. 3. Distribution of the correlation coefficients between estimated and ground-truth parameters
for all 30 synthetic subjects. (A) Inter-regional WRR. (B) Local recurrent excitation WEE. (C)
Local recurrent inhibition WIE.

LEMI, we defined regional E-I balance as the ratio between recurrent excitation (WEE)
and recurrent inhibition (WIE) strength in each ROI. For rDCM, the regional E-I balance
is defined as the sum of all incoming EC (both excitatory and inhibitory) to a particular
ROI as there is only one neural population per region in rDCM. One-way analysis of
variance (ANOVA) was used to compare the E-I means of the three groups followed
by post-hoc analysis with two-sample t-test. Multiple comparisons were corrected by
controlling the false discovery rate (FDR) [1] with q < 0.05.

3 Results

3.1 Ground-truth Validation

The estimation results of one representative synthetic subject are shown in Fig. 2. The
Kalman filter was able to accurately track the ground-truth neural activity (Fig. 2A)
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and predict the deconvolved BOLD (Fig. 2B). The Root Mean Square Error (RMSE)
of the neural state and measurement estimation was 0.15 ± 0.003 and 0.08 ± 0.0003,
respectively. Also, the parameter estimation error rapidly converged to the minimum
(Fig. 2C) and the computation time for a network with 100 regions took about 90 min-
utes (20,000 iterations) when run on a standard computer. The estimated connection
parameters closely matched the ground-truth parameters (r > 0.6; Figs. 2D-F). The
distribution of the correlation coefficients between estimated and ground-truth param-
eters for all 30 synthetic subjects is shown Fig. 3. Most of the correlation values were
greater than 0.5 and the average correlation was 0.79 ± 0.01 for WRR, 0.88 ± 0.02 for
WEE and 0.57± 0.08 for WIE. The estimation results remained robust with higher mea-
surement noise (R = 0.02) and different TR (TR = 2 or 3 sec). Overall, the simulation
results demonstrate that LEMI can faithfully recover the ground-truth parameters.

3.2 Estimation of Empirical E-I Balance in AD

Application of the LEMI model to the ADNI dataset indicated that recurrent excitation
(WEE) in both MCI and AD was significantly decreased compared to NC (p < 0.05,
FDR corrected) for most of the brain regions (Fig. 4A). In particular, one-way ANOVA
showed significant group difference in 34 ROIs that passed FDR correction. In contrast,
no significant difference in recurrent inhibition (WIE) can survive multiple comparisons,
though uncorrected significance showed a general trend of increased inhibition from
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NC to MCI/AD (Fig. 4B). Consequently, in more than half of ROIs (26), the regional
E-I balance was significantly reduced in MCI/AD compared with NC (p < 0.05, FDR
corrected; Fig. 5A). Consistently, the regional E-I balance estimated by rDCM was
largely reduced in MCI/AD when compared with NC, but the degree of reduction was
less prominent in rDCM and the number of regions that survived FDR correction was
much lower (15 vs. 26) (compare Fig. 5B to Fig. 5A). This demonstrates that LEMI
is more sensitive to detect E-I balance change in MCI/AD compared with rDCM by
modeling intra-regional E-I interactions. Also, the widespread reduction in excitation
is consistent with the disruption of synaptic transmission during AD progression [16],
which can be utilized for early AD diagnosis.

4 Discussion and Conclusion

It should be recognized that to enable large-scale EC estimation, LEMI makes a number
of simplifying assumptions including (1) the relative contribution of the excitatory and
inhibitory neural activity to the deconvolved BOLD signal is 2:1; (2) the relationship
between neural states and deconvolved BOLD is linear; and (3) the HRF is identical
for all regions and subjects. Most of these assumptions are biologically plausible and
have been made in previous studies [13,18,24], but their implications in EC estimation
need to be fully investigated in future studies. In summary, we developed a new com-
putational framework for large-scale EC estimation based on rs-fMRI and validated
its efficiency and accuracy using both ground-truth simulation and empirical data. A
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key advantage of LEMI lies in its enhanced biological realism by incorporating intra-
regional E-I interactions, which allows more sensitive detection of neural circuit dis-
ruption in diseases. Overall, this framework offers a highly feasible yet biologically re-
alistic method to construct brain-wide individualized EC network for disease diagnosis
and the identification of circuit dysfunction in neurological and psychiatric disorders.
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