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Abstract. Detecting abnormalities in medical images poses unique chal-
lenges due to differences in feature representations and the intricate
relationship between anatomical structures and abnormalities. This is
especially evident in mammography, where dense breast tissue can ob-
scure lesions, complicating radiological interpretation. Despite leveraging
anatomical and semantic context, existing detection methods struggle to
learn effective class-specific features, limiting their applicability across
different tasks and imaging modalities. In this work, we introduce Ex-
emplar Med-DETR, a novel multi-modal contrastive detector that en-
ables feature-based detection. It employs cross-attention with inherently
derived, intuitive class-specific exemplar features and is trained with an
iterative strategy. We achieve state-of-the-art performance across three
distinct imaging modalities from four public datasets. On Vietnamese
dense breast mammograms, we attain an mAP50 of 0.7 for mass de-
tection and 0.55 for calcifications, yielding an absolute improvement of
16% points from previous state-of-the-art. Additionally, a radiologist-
supported evaluation of 100 mammograms from an out-of-distribution
Chinese cohort demonstrates a twofold gain in lesion detection perfor-
mance. For chest X-rays and angiography, we achieve an mAP50 of 0.25
for mass and 0.37 for stenosis detection, improving results by 4% and
7% points, respectively. These results highlight the potential of our ap-
proach to advance robust and generalizable detection systems for medical
imaging.

Keywords: Computer-Aided Diagnosis · Lesion Detection · Mammog-
raphy.

1 Introduction

With the advent of advanced deep learning algorithms, computer-aided diagnosis
tools have improved significantly over the past decade [1]. Notably, in the context
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of breast cancer screening using mammography, substantial progress has been
made in developing artificial intelligence (AI)-supported screening and diagnostic
systems [8,9,24]. However, mammography screening sensitivity decreases with
higher breast density [27] particularly in populations such as Vietnam and China.
Given the increased prevalence of dense breast tissue among women in these
populations [4], developing algorithms to address this issue is crucial. Challenges
arise not only from the data imbalance across different breast densities [22]
leading to algorithmic bias, but also because detection is complicated by dense
breast tissue obscuring lesions [27,23].

Recent methods for object detection in the natural image domain such as
Faster-RCNN [26], RetinaNet [13], DETR [33], and YOLO [28,25] have pro-
duced impressive results in various medical imaging domains. A recent study by
Chen et al. [9] implemented a multi-modal image-text EfficientNet-based net-
work along with a RetinaNet detector [13] to achieve state-of-the-art (SOTA)
precision for lesion detection in mammograms [22]. On a similar note, Rangara-
jan et al. [24] examined the detection of lesions in dense breast populations, while
Marimuthu et al. [18] investigated the use of imaging and anatomical informa-
tion for lesion detection using deep learning models. Although current studies
achieve impressive results by either using multi-modal or supplementary con-
textual (spatial and anatomical) information, there remains room for further
enhancement. Current methods such as Grounding DINO (GD) [5,15] leverage
vision and language information through cross-modal attention and contrastive
learning, enabling open-set detection with textual prompts, thus achieving SOTA
detection performance on MS-COCO [14] and PASCAL-VOC [10] datasets.

Building on the concept of multi-modal data fusion, we propose Exemplar
Med-DETR, a novel object detection framework that significantly improves le-
sion detection in dense breast mammograms. Our approach learns a class-specific
representative feature, which is incorporated alongside vision and text inputs in
the detection pipeline. These “exemplar” features direct the detection heads to ef-
fectively localize lesions in mammograms based on “matching” class-features. The
effectiveness of Exemplar Med-DETR (EM-DETR) depends on the contrastive
learning scheme between classes. This poses two main challenges: differentiating
anatomical features from abnormalities and distinguishing closely related class
features. Secondly, anatomies are inherently aligned in medical images compared
to natural images, where the object classes can occur at any location. Exploiting
these insights, EM-DETR introduces an iterative training scheme that trains
the network in stages, contrasting between normal anatomies and regions with
lesions. In this study, we perform a comprehensive evaluation of our approach
on diverse public datasets and assess the impact of the introduced modules with
a range of ablation studies.
Main contributions: 1) We introduce EM-DETR that enables feature-based
detection in medical images. This is achieved through an Exemplar generation
module that extracts class-specific representative embeddings to guide detec-
tion. 2) We enhance the contrastive learning pipeline [15] with domain-specific
background selection, achieving notable gains in abnormality detection using an
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Fig. 1. Overview of EM-DETR. Visual features Xk & positional embeddings Pk

are extracted from the frozen image backbone based on the kth class location (red). F
uses learnable class-specific embeddings ctk & cek to calculate qk. A moving average
of qk results in the representative embedding ek. Interleaving the text embedding tk
with ek enables text-and feature-based detection for each class. ek is used in additional
Lcontrast & Lfeat losses to improve the decoder search operations. Inference path in
dotted arrows.

iterative training strategy. 3) We demonstrate significant gains in lesion detec-
tion in mammography [22] and further evaluate on a public Chinese mammogram
dataset [7], comparing with a board-certified radiologist. To also assess gener-
alizability, we extend the method to detect lesions in chest X-rays (CXRs) [21]
and stenosis in angiography [20] datasets.

2 Method

Our method is based on multi-modal DETR [3,15] that performs “language
guided query selection” through cross-attention between image and text em-
beddings. We propose to learn class-specific example embeddings or features
that can additionally guide detection. These exemplars are computed from the
visual features that correspond to the spatial location of the respective classes.
Attending to these features enables detection heads to perform a prototype-
based search, allowing for an easy expansion to novel classes. Fig. 1 gives an
overview of EM-DETR that includes exemplar generation and additional losses.
Furthermore, EM-DETR employs an iterative training strategy.

Exemplar Generation G: The Swin transformer [16] image backbone is a
multi-scale, shifted window transformer that produces a set of J patch embed-
dings X′ = [x1, ...xJ ]

T for an input image, where each xj ∈ Rd. A similar dimen-
sion set of positional encodings is also generated, denoted as P′ = [p1, ...pJ ]

T .
Let Xk ⊂ X′ and Pk ⊂ P′ represent the set of M tokens that fall within the
region of the class k (red).
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First, Pk is scaled by a learnable class-specific parameter ak ∈ R and added
to Xk. This produces Hk, mathematically shown as

Hk = Xk +Pk × ak. (1)

ak modulates the impact of the positional embeddings, thereby influencing the
decoder search operation. Additional learnable class-wise token ctk and posi-
tional cek embeddings are then concatenated with Hk. The simple attention
pooling transformer F processes the concatenated result to learn a single nor-
malized embedding using self-attention mechanism [19]. These class-wise embed-
dings (ctk and cek) are also added to the output of F to produce a class-specific
feature embedding qk ∈ Rd encapsulating the textural and spatial features cor-
responding to class k. The addition of ctk and cek is analogous to the positional
embeddings added to the text embeddings in the feature enhancer [15,32]. Math-
ematically, qk is given as

qk = F(concat(ctk, cek,Hk)) + ctk + cek, (2)

where k ∈ {1, . . . , N} and N is the total number of classes. A moving average is
calculated over L samples of qk, thereby generating the representative embed-
ding ek ∈ Rd. This prevents the decoder from pursuing rapidly changing features
during each training iteration. ek is stored in a Memory bank as a prototype fea-
ture embedding that helps prevent catastrophic forgetting. The memory bank
of saved feature representations, or exemplars ek, are also used for inference.

In parallel, the frozen text encoder processes text prompts and produces em-
beddings tk which are interleaved with the corresponding ek and passed down-
stream to the encoder-decoder pipeline [3,15]. Text prompts are literal class
names (e.g. “mass”, “stenosis”, “background”). The decoder predicts the kth class
location by processing the cross-attention encodings of the text and representa-
tive visual features, tk and ek with the input image embeddings, X′ and P′.

Additional Losses L: In addition to the original DETR loss terms Lbbox, LIoU,
and Lclassify in [15] we introduce two additional loss functions to improve the
robustness of EM-DETR. A cosine similarity contrastive feature loss Lcontrast, is
applied on E = [e1...eN ]T of all 1 ≤ k ≤ N classes. Lcontrast ensures that all class
representative embeddings remain orthogonal to each other in the latent space,
promoting distinct and separable representations [30]. A L2 feature loss, Lfeat,
is applied between ek and the decoder’s top proposal dk for class k ensuring that
the model predicts a consistent latent representation for each class [2,32]. This
approach helps maintain class-specific embeddings over time while stabilizing the
training process and is empirically observed to improve our detection results.

Iterative training strategy: While the trained decoder effectively learns the
features of these classes, it faces challenges in distinguishing normal anatomi-
cal structures. Therefore, we propose a multi-stage iterative learning approach.
Stage I involves training the proposed model with all annotations, while Stage II
refines the weights through a per-class background-versus-foreground detection
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Table 1. Results for lesion detection on VinDR-Mammo [22] & CMMD [7] test
datasets. The std dev. is < ±0.005 for all runs. ∗ indicates a statistical significance
of p < 0.0001 compared to the baseline. † for Swin architecture.

Method Mass[22] Calcification[22] CMMD Mass[7]

mAP50 Recall mAP50 Recall TP rate

YOLOV3† [28] 0.52 0.35 0.11 0.15 -
Faster-RCNN† [26] 0.54 0.44 0.22 0.26 -
RetinaNet† [13] 0.58 0.50 0.43 0.36 -
MammoCLIP [9] 0.58 - 0.35 - -
GD† [15] (Baseline) 0.48 0.61 0.45 0.44 0.32
EM-DETR† (Ours) 0.70∗ 0.66∗ 0.55∗ 0.50∗ 0.67∗

task. The background annotations are generated based on the dataset: for mam-
mogram and CXR, random boxes are sampled from normal images. Moreover,
in CXR, a pool of training lesion locations is used so that anatomical priors are
learned. In contrast, stenosis backgrounds are selected from outside the anno-
tated regions. In an additional Stage III, we denote previously detected False
Positive (FP) regions as background classes to further refine the network.

3 Experimental setup

Data description: We utilize the VinDR-Mammo dataset [22] for lesion de-
tection tasks involving mass and calcification. It comprises 16,000 training and
4,000 full-resolution test images from patients in Vietnam, with bounding box
(bbox) annotations. The dataset contains a high proportion of dense breast tis-
sue (approx. 90% [22]), making mass detection challenging for both radiologists
and AI models. For a fair comparison, the data set is created according to the
current SOTA MammoCLIP [9]. Furthermore, we utilize a random subset of 100
images from the Chinese mammogram dataset CMMD [7] to evaluate the lesion
detection task. Due to the absence of bbox annotations in this dataset, a board-
certified radiologist identified the centers of the lesion region for groundtruth.
All CMMD images contain lesions, which impacts labeling. Full-resolution data
preprocessing involves cropping the background [23]. We extend the validation
study to additional domains to assess our method’s robustness and generaliz-
ability. VinDR-CXR [21] is a dataset of 15,000 training and 3,000 test postero-
anterior (PA) full-resolution images with bbox annotations. We evaluate for a
comparable task of nodules and mass detection with a test set created as in [31].
To assess the model with a dissimilar objective, we investigate stenosis detection
utilizing the ARCADE [20] angiography dataset. This dataset [20] contains 1000
training and 300 test images. The dataset contains labeling noise where steno-
sis regions outside the main vessel tree are not annotated in some images, thus
minimizing observed gains. These are public datasets and we ensure no patient
overlap between training and test sets in all experiments.
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Table 2. Results for lesion detection on VinDR-CXR [21] & stenosis detection on
ARCADE test datasets [20]. The std dev. is < ±0.01 for all runs. ∗ & ∗∗ indicates a
statistical significance of p < 0.0001 & p < 0.001, respectively compared to the baseline.

Category Method mAP50 Recall

Nodules/Mass
CXR [21]

SAR CNN [12] 0.07 -
EARL [11] 0.14 -
DualAttnNet [29] 0.14 -
Multi-scale Location Aware Detector [31] 0.18 -
YOLOV7-X [17] 0.21 -
GD (Baseline) [15] 0.14 0.30
EM-DETR (Ours) 0.25∗ 0.33

Stenosis [20]

DINO-DETR [33] 0.23 0.53
YOLO [25] 0.25 0.18
GD (Baseline) [15] 0.30 0.37
EM-DETR (Ours) 0.37∗∗ 0.42

Experimental details: The experiments were run on a single node with four 40
GB A100 GPUs, using a learning rate of 0.0008 with a linear scheduler under the
MMDetection [6] framework. An average of 5 runs is recorded. The image and
text backbones were frozen. F is designed as a simple 2-head, 4-layer transformer.
The moving average is computed over L = 200 exemplars. We initially train our
model with all available annotations (Stage I) and subsequently refine it by
focusing on each class individually (Stage II). We utilize 8 randomly selected
background regions from normal images to ensure coverage of the entire image.
At the final stage, we further finetune the model with the top 8 misclassified
regions (FP) set as background (Stage III). The mean average precision at 50%
IoU (mAP50) is reported with an average of 50 to 95% IoU recall values.

4 Results and Discussion

Tables 1 and 2 show the results for lesion detection on mammography, and for
lesion and stenosis detection on CXRs and angiography images, respectively.
Fig. 2 and 3 illustrate exemplary detection results from each dataset.

Our method achieves SOTA results for both mass and calcification detection
on VinDR-Mammo dataset [22] as seen in Table. 1. A significant improvement
of 12% mAP50 is observed in mass detection, compared to the previous SOTA.
As seen in Fig. 2(a), the prediction closely aligns with the groundtruth, even
within extremely dense breast tissue. Similarly, an increase of 20% w.r.t. SOTA
is observed in the calcification detection results. Despite significant gains, we
investigate cases with lower mAP50. We find that calcifications commonly co-
occur with mass and are annotated with a common bbox. Our method relies
on feature matching and these annotations influence our results, leading to pre-
dictions that do not precisely match the groundtruth as seen in Fig. 2(b). In
the first calcification image, the model accurately predicts calcification regions
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Fig. 2. Detection results of (a) Mass [22], (b) Calcification [22], (c) Nodule [21], &
(d) Stenosis [20]. Predictions for the second mass image coincide with groundtruth.
Stenosis images show the top 5 predictions, while mammogram & CXR images show
the top 1. groundtruth (yellow) & predictions (green). Fig(s) resized for presentation.

Fig. 3. Example images that compare groundtruth in yellow with predictions (green)
between GD & EM-DETR on CMMD [7] images. Through “feature-based” search EM-
DETR reliably locates the obscure mass regions.

without including the larger mass. However, in the second image, it includes the
mass within the predicted region due to inconsistent feature extraction in G.

To evaluate the out-of-distribution (OOD) performance of mass detection,
we use the model previously trained on the mass images of Vindr-Mammo [22]
and test it on CMMD [7]. Due to the absence of precise bbox annotations and
based on practical clinical relevance, we consider a True Positive (TP) rate as our
evaluation metric. A detection is considered a TP, if the groundtruth center is
within the highest score predicted box above a threshold of 0.1. With this criteria,
we achieve an absolute increase of 35% compared to the baseline as denoted
in Table. 1. In Fig. 3, we observe three instances of mass detection between
the baseline and EM-DETR along with the groundtruth marked in yellow. For
this test, we use the exemplars stored in the memory bank, computed during
training for mass detection on VinDR-Mammo dataset. We observe EM-DETR
effectively identifies the abnormal regions in OOD dense mammograms. The
striking improvements stem from the model’s capacity to infer the salient dataset
agnostic features of masses. Additional CMMD results are in supplementary file.
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Fig. 4. (a) t-SNE plots of mass & calcification vs. their background memory bank
embeddings. (b) Mass & calcification mAP50 for different model configurations and
training stages. GD is baseline, F , P as in Sec. 2. L is Lcontrast+Lfeat (Sec. 2). Stages
as in Sec. 2. Stage I, II & III includes F ,P & L.

As our method effectively contrasts between normal and pathological anatomy,
we also assess nodule and mass detections on a CXR dataset [21]. We achieve a
gain of 4% resulting in a new SOTAof 0.25 mAP50 as seen in Table. 2. Fig. 2(c)
presents examples of nodule detections.

The generalizability of our method is further demonstrated in stenosis detec-
tion [20] which differs from the previous tasks, resulting in a 7% improvement
in mAP50 attaining SOTA. The results of stenosis detection are also depicted in
Table. 2. The decoder learning methodology relies on contrasting the proposed
hypothesis boxes, and the presence of labeling noise—stemming from stenosis
not being annotated in secondary vessels—leads to improvements that fall short
of expectations. Moreover, multiple smaller hypothesis boxes that follow the im-
pacted vessel structure are predicted within the larger groundtruth region, also
leading to lower precision scores. Fig. 2(d) displays multiple predicted stenosis
regions that are within the groundtruth annotations as well as an example of an
absent groundtruth annotation.

Ablation studies: Fig. 4(a) presents the t-SNE plots of exemplar features in
the case of mass and calcification vs. their backgrounds. The exemplars are ob-
served to be well separated, thus ensuring the decoder searches for discriminative
class features. Fig. 4(b) shows the impact of various modules of EM-DETR for
mass and calcification across different model configurations and training stages.
Starting from the baseline GD, the exemplar generation module is added with-
out and with positional encodings (P in Sec. 2), and the introduced loss terms
(L in Sec. 2). To provide additional insight, the performance gain is presented
through the different stages of training (Sec. 2). The progressive integration of
various modules in EM-DETR leads to consistent improvements in mass detec-
tion, as evidenced by the increasing mAP50. On the other hand, we observe that
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the calcification results initially decrease with the introduction of F , to improve
later after Stage II training. This is attributed to the groundtruth incorporating
identical annotations for mass and calcification in images featuring both findings.

5 Conclusion

In this study, we demonstrate that EM-DETR efficiently performs detection
in various challenging tasks. It achieves SOTA performance through “feature
matching” and domain adaptive training. The method ensures the decoder is
primed to search based on “exemplar” features, enabling a powerful stage I model
that may expand easily to novel classes. Future work will investigate the use of
EM-DETR for medical detection foundation models and few-shot detection to
reduce annotation cost.

Acknowledgments. This study was funded by Siemens-Healthineers, U.S.A

Disclosure of Interests. The authors have no competing interests to declare.

References

1. Bhat, S., Mansoor, A., Georgescu, B., Panambur, A.B., Ghesu, F.C., Islam, S.,
Packhäuser, K., Rodríguez-Salas, D., Grbic, S., Maier, A.: AUCReshaping: Im-
proved sensitivity at high-specificity. Scientific Reports 13(1), 21097 (2023) 1

2. Bulat, A., Guerrero, R., Martinez, B., Tzimiropoulos, G.: FS-DETR: Few-shot de-
tection transformer with prompting and without re-training. In: ICCV. pp. 11793–
11802 (2023) 4

3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: ECCV. pp. 213–229. Springer (2020)
3, 4

4. del Carmen, M.G., Halpern, E.F., Kopans, D.B., Moy, B., Moore, R.H., Goss,
P.E., Hughes, K.S.: Mammographic breast density and race. American Journal of
Roentgenology 188(4), 1147–1150 (2007) 2

5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. NeurIPS 33, 9912–
9924 (2020) 2

6. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu,
Z., Xu, J., et al.: MMDetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155 (2019) 6

7. Cui, C., Li, L., Cai, H., Fan, Z., Zhang, L., Dan, T., Li, J., Wang, J.: The
Chinese Mammography Database (CMMD): An online mammography database
with biopsy confirmed types for machine diagnosis of breast. The Cancer Imaging
Archive (2021). https://doi.org/10.7937/tcia.eqde-4b16 3, 5, 7

8. Díaz, O., Rodríguez, A., Sechopoulos, I.: AI for breast cancer detection: Technology,
challenges, and prospects. Eur. J. Radiol. p. 111457 (2024) 2

9. Ghosh, S., Poynton, C.B., Visweswaran, S., Batmanghelich, K.: Mammo-CLIP:
A Vision Language Foundation Model to Enhance Data Efficiency and Robust-
ness in Mammography. In: Linguraru, M.G., Dou, Q., Feragen, A., Giannarou, S.,
Glocker, B., Lekadir, K., Schnabel, J.A. (eds.) MICCAI. pp. 632–642. Springer
Nature Switzerland, Cham (2024) 2, 5

https://doi.org/10.7937/tcia.eqde-4b16
https://doi.org/10.7937/tcia.eqde-4b16


10 S. Bhat et al.

10. Hoiem, D., Divvala, S.K., Hays, J.H.: Pascal VOC 2008 challenge. World Literature
Today 24(1), 1–4 (2009) 2

11. Le, K.H., Tran, T.V., Pham, H.H., Nguyen, H.T., Le, T.T., Nguyen, H.Q.: Learning
from multiple expert annotators for enhancing anomaly detection in medical image
analysis. IEEE Access 11, 14105–14114 (2023) 6

12. Lin, C., Huang, Y., Wang, W., Feng, S., Huang, M.: Lesion detection of chest X-
Ray based on scalable attention residual CNN. Math Biosci Eng 20(20), 1730–49
(2023) 6

13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV (2017) 2, 5

14. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV. pp.
740–755. Springer (2014) 2

15. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Jiang, Q., Li, C., Yang,
J., Su, H., et al.: Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. In: ECCV. pp. 38–55. Springer (2024) 2, 3, 4, 5, 6

16. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: ICCV. pp.
10012–10022 (2021) 3

17. Luo, J., Wang, S., Wang, Q., Liu, S.: A Lung Lesion Detection Algorithm Based
on YOLOv7 and Self-Attention Mechanism. In: CCC. pp. 8786–8791 (2023) 6

18. Marimuthu, T., Rajan, V.A., Londhe, G.V., Logeshwaran, J.: Deep Learning for
Automated Lesion Detection in Mammography. In: ICIDeA. pp. 383–388. IEEE
(2023) 2

19. Marin, D., Chang, J.H.R., Ranjan, A., Prabhu, A., Rastegari, M., Tuzel, O.: To-
ken pooling in vision transformers for image classification. In: Proceedings of the
IEEE/CVF WACV. pp. 12–21 (2023) 4

20. Maxim Popov, A., et al.: ARCADE: Automatic Region-based Coronary Artery
Disease diagnostics using x-ray angiography imagEs Dataset Phase (2023) 3, 5, 6,
7, 8

21. Nguyen, H.Q., Lam, K., Le, L.T., Pham, H.H., Tran, D.Q., Nguyen, D.B., Le,
D.D., Pham, C.M., Tong, H.T., Dinh, D.H., et al.: VinDr-CXR: An open dataset
of chest X-rays with radiologist’s annotations. Scientific Data 9(1), 429 (2022) 3,
5, 6, 7, 8

22. Nguyen, H.T., Nguyen, H.Q., Pham, H.H., Lam, K., Le, L.T., Dao, M., Vu, V.:
VinDr-Mammo: A large-scale benchmark dataset for computer-aided diagnosis in
full-field digital mammography. medRxiv (2022) 2, 3, 5, 6, 7

23. Panambur, A.B., Yu, H., Bhat, S., Madhu, P., Bayer, S., Maier, A.: Attention-
guided Erasing: Novel Augmentation Method for Enhancing Downstream Breast
Density Classification. In: BVM Workshop. pp. 13–18. Springer (2024) 2, 5

24. Rangarajan, K., Aggarwal, P., Gupta, D.K., Dhanakshirur, R., Baby, A., Pal, C.,
Gupta, A.K., Hari, S., Banerjee, S., Arora, C.: Deep learning for detection of iso-
dense, obscure masses in mammographically dense breasts. European Radiology
33(11), 8112–8121 (2023) 2

25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: CVPR. pp. 779–788 (2016) 2, 6

26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. IEEE transactions on PAMI 39(6), 1137–
1149 (2016) 2, 5



Exemplar Med-DETR 11

27. Sickles, E.A., D’Orsi, C.J., Bassett, L.W., et al.: ACR BI-RADS Mammography.
In: ACR BI-RADS Atlas, Breast Imaging Reporting and Data System, pp. 121–
140. Reston, VA, American College of Radiology (2013) 2

28. Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z.: Apple detection during
different growth stages in orchards using the improved YOLO-V3 model. Comput-
ers and electronics in agriculture 157, 417–426 (2019) 2, 5

29. Xu, Q., Duan, W.: DualAttNet: Synergistic fusion of image-level and fine-grained
disease attention for multi-label lesion detection in chest X-rays. Computers in
Biology and Medicine 168, 107742 (2024) 6

30. Yang, F., Wu, K., Zhang, S., Jiang, G., Liu, Y., Zheng, F., Zhang, W., Wang, C.,
Zeng, L.: Class-aware contrastive semi-supervised learning. In: CVPR. pp. 14421–
14430 (2022) 4

31. Yuan, Y., Liu, L., Yang, X., Liu, L., Huang, Q.: Multi-scale Lesion Feature Fusion
and Location-Aware for Chest Multi-disease Detection. JIIM pp. 1–16 (2024) 5, 6

32. Zhang, G., Luo, Z., Cui, K., Lu, S., Xing, E.P.: Meta-DETR: Image-level few-shot
detection with inter-class correlation exploitation. IEEE transactions on PAMI
45(11), 12832–12843 (2022) 4

33. Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L.M., Shum, H.Y.:
DINO: DETR with improved denoising anchor boxes for end-to-end object detec-
tion. arXiv preprint arXiv:2203.03605 (2022) 2, 6


