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Abstract. Recent advances in deep learning and generative AI have en-
hanced our understanding of brain function and enabled brain-computer
interfaces to reconstruct stimuli from non-invasive neuroimaging data.
In this work, we introduce an efficient two-stage training framework
for captioning stimulus images from fMRI data, leveraging the compact
representations of vision-language models and incorporating contrastive
learning with text embeddings. Our approach demonstrates strong per-
formance in fMRI captioning across multiple evaluation metrics and en-
ables multimodal retrieval, highlighting the advantages of the contrastive
learning. Additionally, we conduct an analysis with region-of-interests
(ROI) to examine the contributions of specific brain regions to the decod-
ing process, providing interpretable results that align with neuroscience
theories. Our findings contribute to advancing brain decoding techniques
and improving model interpretability.
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1 Introduction

Hierarchical image processing in the brain [6] inspired the development of con-
volutional neural networks (CNNs) [8]. Visualizing features and saliency maps
across CNN layers reveals that early layers detect edges, while deeper layers
capture class-specific features [29], similar to the functioning of the visual cor-
tex. Furthermore, CNN-learned representations strongly correlate with neural
activity in macaques [28] and humans [26]. Given these similarities, deep neural
networks (DNNs) are increasingly used to decode visual representations in the
human brain by inversely predicting DNN features from neural activity.

Huth et al. [7] showed that hours of narrated stories could be decoded by
mapping fMRI data to word embeddings. Recent advances in generative models
have further improved decoding accuracy. For instance, Latent Diffusion Models
(LDMs) [17] have facilitated the reconstruction of high-resolution stimulus im-
ages from fMRI data [13] [22]. Meanwhile, the Transformer architecture [24] and
GPT-2 [15] have significantly improved natural language reconstruction from
neural activity [23].
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However, the quality and semantic coherence of generated outputs require
further refinement and alternative approaches. Traditional approaches primar-
ily reconstruct visual stimuli as images from brain activity. Recent advances
in multimodal deep learning provide a compelling alternative: decoding neural
responses directly into textual descriptions, a process known as fMRI caption-
ing. In this context, multimodal retrieval provides a flexible way to decode both
what is seen and the underlying semantic content from brain activity. Despite
the progress in fMRI-based decoding, significant challenges remain in efficiently
aligning brain activity with meaningful textual descriptions. Existing methods
often struggle with computational efficiency, semantic coherence, and retrieval
capabilities.

To address these challenges, we propose a novel framework that enhances
fMRI captioning through contrastive learning. Our key contributions are as fol-
lows:

– We propose a novel and computationally efficient two-stage training algo-
rithm to align fMRI data with the compact latent representations of vision-
language models, particularly BLIP-2 [9]. Our approach introduces an im-
proved method for fMRI captioning, demonstrating that contrastive learning
enhances decoding performance while extending the capabilities of fMRI-
based models to enable direct image and text retrieval.

– We provide an interpretability analysis of the decoding process using syn-
thetic fMRI patterns. Our findings offer insights into the roles of different
brain regions in neural decoding, aligning with established theories of hier-
archical and modular information processing in the brain.

1.1 Related Work

The CLIP (Contrastive Language-Image Pre-training) model [14], which consists
of an image and text encoder, has played a crucial role in advancing multimodal
models. CLIP’s text embeddings guide the reverse diffusion process in Latent
Diffusion models [17] for text-to-image generation, while its image encoder has
been widely integrated into Vision-Language Models (VLMs) [11] [25] to align
Large Language Models (LLMs) with visual data.

Given its versatility, CLIP has also been actively used in neural decoding.
Ferrante et al. [4] and Scotti et al. (MindEye-2) [19] leverage fMRI signals to
predict CLIP image embeddings, which are then used to reconstruct visual stim-
uli via Stable Diffusion [17] or generate captions using the text decoder of the
Generative Image Transformer (GIT) [25]. Similarly, Mai et al. [12] propose an
fMRI captioning approach that predicts the latents of CLIP-L’s text encoder,
which are subsequently processed by GPT-2 [15] within Versatile Diffusion’s [27]
text-to-text pipeline.

However, brain decoding research face a significant challenge due to the
high dimensionality of conditional embeddings. For instance, Brain Diffuser [13],
MindEye-2 [19], and the work of Ferrante et al. [4] attempt to predict high-
dimensional embeddings of size 257× 768 and 257× 1024, respectively, from an
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already high-dimensional fMRI voxel vector of length 15, 724. These approaches
impose high computational demands.

To mitigate this limitation, our work leverages the BLIP-2 [9] multimodal
model, which utilizes more compact visual embeddings of size 32× 768. BLIP-2
employs a Querying Transformer (Q-Former) to map image encoder features into
the LLM embedding space. Acting as a compression network, Q-Former encodes
large frozen image features (257× 1024) into compact query tokens (32× 768),
preserving text-relevant and semantically rich image representations that are
well-suited for brain decoding.

2 Methodology

2.1 Dataset

Our work utilizes the Natural Scenes Dataset (NSD) [1], a 7 Tesla fMRI dataset
collected from eight subjects who viewed images from the COCO dataset [10]
for three seconds each. Consistent with prior fMRI captioning studies, we fo-
cus on data from a single subject (subj1 ) for quantitative analysis. Subject 1
completed all experimental trials, resulting in a dataset of 8, 859 training images
corresponding to 24, 980 fMRI trials (with up to three repetitions per image) and
982 test images with 2, 770 fMRI trials. For images with multiple presentations,
we averaged the corresponding fMRI trials in our experiments.

Following Ozcelik et al. [13], we processed the fMRI data using single-trial
beta weights obtained from a GLM with ridge regression (betas_fithrf_GLM-
denoise_RR). We applied z-normalization along the time dimension and ex-
tracted a 15, 764-voxel vector using the NSDGeneral Regions-of-Interest (ROI)
masks. For interpretability analysis, we employed ROI masks corresponding to
various visual cortex regions.

2.2 fMRI Captioning with BLIP-2

Our method leverages the pretrained BLIP-2 model1 to generate textual descrip-
tions from fMRI activity. We chose BLIP-2 over other Vision-Language Models
due to its more compact and language-aligned image representations (32× 768)
compared to the larger embeddings used in previous fMRI captioning methods
(257× 768 or 257× 1024).

As shown in Figure 1, our two-stage framework begins with feature extraction
and Brain Model training. A stimulus image is processed by the BLIP-2 Image
Encoder, and its extracted features undergo cross-attention with learned query
vectors in the BLIP-2 Q-Former, producing a final representation of size 32 ×
768. Next, we train the Brain Model using Ridge Regression, mapping fMRI
activity (15, 764 voxels) to each channel of the BLIP-2 Q-Former embeddings.
To optimize performance, we evaluate the model across a range of regularization
parameters (α) and select the best-performing configuration.
1 https://huggingface.co/Salesforce/blip2-opt-2.7b
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Fig. 1: Stage 1: fMRI voxels are mapped
to BLIP-2’s internal representations
through a Brain Model. The image en-
coder extracts features, which interact
with query tokens in the BLIP-2 Q-
Former to produce the final embedding
(green).

Brain 
Model

BLIP-2 Q-Former

A lone giraffe standing by a 
tree

Self-attention

Feed-forward

xN

Predicted 
Image 

Embedding

Image 
Embedding

Text 
Embedding

MSE Loss

Text-Brain 
Contrastive 
Loss

Text-Image 
Contrastive 
Loss

Fig. 2: Stage 2: The Brain Model pre-
dicts embeddings aligned with both im-
age and text representations using MSE
and contrastive losses. The BLIP-2 Q-
Former generates text embeddings from
COCO captions via self-attention lay-
ers.

In Stage 2, we apply contrastive learning to align the Brain Model outputs
with text embeddings for retrieval. Ground truth COCO captions are processed
through only the BLIP-2 Q-Former’s self-attention layers to generate text em-
beddings. We use a pretrained BLIP-2 checkpoint2, which includes vision and
language projection weights optimized for image-text retrieval. To align the
Brain Model’s output with BLIP-2’s shared image-text space, we introduce a
linear projection layer.

Figure 2 illustrates this training process, where the Brain Model from Stage
1 is optimized alongside contrastive objectives. The loss function is defined as
follows:

L = λ1LMSE(b, i) + λ2LCLIP(b, t) + λ3LCLIP(i, t) (1)

where LCLIP refers to the InfoNCE loss used in CLIP training [14]. The total
loss consists of three terms, each weighted by a corresponding λ:

1. Mean Squared Error (MSE) loss: Preserves alignment between the Brain
Model’s predicted embeddings b and the ground truth image embeddings i
from Stage 1.

2. Brain-text contrastive loss: Encourages the Brain Model’s outputs b to align
with text embeddings t, improving text retrieval.

3. Image-text contrastive loss: Prevents catastrophic forgetting in the BLIP-2
Q-Former and ensures robust image-text alignment by reinforcing consis-
tency between t and i.

2 https://huggingface.co/Salesforce/blip2-itm-vit-g
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For Stage 2, we implement our model using PyTorch Lightning [3] and lever-
age its automatic learning rate tuning mechanism [20]. All experiments were
conducted on an NVIDIA RTX A6000 GPU.

Our code is available on GitHub3.

3 Results & Discussion

3.1 Retrieval

For image and brain retrieval, we first convert candidate images into BLIP-2 Q-
Former representations (Figure 1). Using the predicted representation from the
input fMRI data, we compute cosine similarity scores between the fMRI-derived
representation and candidate image embeddings. Following the MindEye-2 eval-
uation protocol, we compute top-1 retrieval accuracy across 300 samples, where
random chance is 0.33%. Reported results reflect the mean accuracy over 30
trials.

For text/brain retrieval, we predict an text-aligned image embedding from
fMRI data using the Brain Model from the second stage (Figure 2) and obtain
caption embeddings via BLIP-2 Q-Former. To identify the correct caption from
fMRI data—and vice versa we use cosine similarity, following the image/brain
protocol, with top-1 accuracy averaged over 50 trials.

Our brain decoding pipeline (Table 1) excels in multimodal retrieval. Stage
1 surpasses Brain Diffuser in image retrieval but slightly underperforms in brain
retrieval. Stage 2 significantly improves accuracy, demonstrating the benefits
of contrastive learning. While not matching MindEye-2’s near-perfect perfor-
mance, our model is capable of text/brain retrieval, achieving 49.6% accuracy
in retrieving text from fMRI and 45.0% for brain signals from text (among
300 candidates). This multimodal retrieval unlocks natural-language querying of
fMRI data, resulting in a more comprehensive interpretation of brain activity.
We attribute MindEye-2’s superior results to its direct image-retrieval training,
larger embeddings (256 × 1664), and multi-subject data, whereas our approach
emphasizes compact, multimodal representations.

3.2 fMRI Captioning

For fMRI captioning, we generate textual descriptions using the OPT-2.7B
decoder-only language model [30], as implemented in BLIP-2. The process maps
fMRI data to query embeddings, which are then projected and fed into the lan-
guage model. As shown in Figure 3, this task requires only the Brain Model,
allowing us to utilize outputs from both Stage 1 and Stage 2. To evaluate per-
formance, following previous works, we use linguistic metrics (Meteor, Rouge-
1, Rouge-L) and cosine similarity scores between predicted and ground truth
captions using the all-MiniLM-L6-v2 Sentence Transformer [16], CLIP-B and
CLIP-L text encoders.
3 https://github.com/slavaheroes/brain-decoding-with-blip2
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Table 1: Top-1 retrieval accuracies. All values are computed for subject 1, except
Brain Diffuser, whose numbers are the mean over subjects 1, 2, 5, 7 [19]. I, B,
T denote Image, Brain, and Text, respectively. I → B refers to retrieving the
correct image given its corresponding fMRI signal, and so on.

Model I → B B → I T → B B → T
Stage 1 0.437 0.222 - -
Stage 2 0.722 0.549 0.496 0.450
MindEye-2 [19] 1.000 0.997 - -
MindEye-1 [18] 0.972 0.947 - -
Brain Diffuser [13] 0.188 0.263 - -

Brain 
Model

…

Fully 
Connected

OPT-2.7B Decoder-only LLM

…

Output text: A lone giraffe 
standing by a tree

Fig. 3: Inference pipeline for fMRI captioning. The Brain Model maps fMRI
data to BLIP-2 Q-Former embeddings, which are projected and processed by
the OPT-2.7B [30] language model to generate textual descriptions.

Table 2 compares fMRI captioning performance across different models. Our
Stage 2 model achieves the best performance in 5 out of 6 evaluation metrics,
excelling in all linguistic metrics and sentence transformer and CLIP-Base em-
bedding similarities. The only exception is CLIP-L similarity, where UniBrain
performs better, likely due to its direct use of CLIP-L text encoder embeddings
in the decoding process.

Notably, our Stage 1 model is already competitive with the state-of-the-art
MindEye-2, outperforming it in all linguistic metrics while achieving similar
results in semantic similarity scores. The consistent improvement from Stage 1
to Stage 2 across all metrics highlights the effectiveness of contrastive learning in

Table 2: Comparison of fMRI captioning performance with other works for sub-
ject 1.

Model Meteor Rouge-1 Rouge-L Sentence CLIP-B CLIP-L
Stage 1 0.303 0.443 0.407 0.447 0.742 0.639
Stage 2 0.327 0.467 0.430 0.515 0.771 0.674
MindEye-2 0.248 0.326 0.353 0.479 0.737 0.638
UniBrain 0.170 0.247 0.225 - - 0.861
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generating more precise and detailed captions, mirroring its impact in retrieval
tasks.

Figure 4 provides qualitative evidence of these improvements. The Stage 2
model generates more accurate and detailed descriptions, distinguishing fine-
grained details. For instance, , it correctly identifies “a wave” instead of the more
general “a beach” in a surfing image, recognizes “zebras” rather than “horses” and
“buses” instead of “a train”, and generates more descriptive adjectives, showing
the better understanding of the scenes.
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Fig. 4: Qualitative comparison of caption generation between Stage 1 and Stage
2 models. The top row shows stimuli images with captions generated by both
models. Red text highlights key content differences.

3.3 Interpretability Analysis of ROI-Specific fMRI Signals

To analyze the role of different brain regions in visual processing and their contri-
bution to brain decoding, we conducted an ROI-based interpretability analysis
following Brain Diffuser [13]. We generated synthetic fMRI signals by setting
voxel values of a Region of Interest (ROI) to 1 while zeroing out others. These
signals were processed through our Brain Model, normalized, scaled by 11, and
passed to the language model for caption generation.

Table 3 presents ROI-specific captions across four subjects who completed
all trials. The results align with neuroscientific findings [2] [5] [6] [21], reflecting
the hierarchical and modular nature of visual processing. Captions generated
from V1 highlight basic black-and-white features, particularly for subjects 1 and
5, while descriptions become increasingly detailed from V1 to V4. Higher visual
areas exhibit clear functional specialization: floc-words regions generate captions
related to text and signs, floc-faces and floc-bodies consistently describe people
and animals, and floc-places produces location-specific descriptions, such as “a
chair in front of a building” or “a bathroom with a sink and a toilet on a wooden
floor.” These findings are consistent with ROI-specific image reconstructions
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Table 3: Captions generated from synthetic fMRI signals that maximize activity
in specific ROIs using Stage 1 models. Results are shown for subjects who com-
pleted all NSD sessions.

ROI subj1 subj2 subj5 subj7

V1 a black and
white sign

a man and
a woman are

sitting
on a bench

a black
and white

cow

a man and
a woman are
walking on

a street

V2

a man is
standing
next to a

small
animal

a close up
of a large
bowl with
food on it

a group of
people sitting
on a street

a table
with

a bunch of
food on it

V3
a white and

blue
building

a close up
of a bathroom
with a white
and yellow
striped bed

a man
holding

a black and
white striped

shirt

a bathroom
with a sink
and a few
black and

white
chairs

V4

a group of
people

standing
on a field
with a ball

a small
group of
people

standing on
a white
playing
field

a group of
people have
on helmets
on top of

a skateboard

a group
of white and

yellow
colored

baseballs

floc-words
a sign that

says
"the park"

a sign that
says

"the black
and white"

two brown
colored
cartoon
animals

an object
with

the words
inside

stands under
the blue sky

floc-bodies a man in a
blue shirt

a man
holding

a surfboard
in a field

a man and
a giraffe
standing
on a field

a man
holding

a surfboard

floc-faces

a man
sitting

on a chair
with a dog

a woman
sitting

on a chair
with a cat

sitting
on her lap

a woman
sitting

on a couch
with a cat

a man and
his very

furry friend

floc-places

a woman sitting
in a chair in
front of a
building

a room
with a pool
table and
a couch

a bathroom
with

a window
and a table

with
a clock

a bathroom
with a sink
and a toilet
sitting on
a wooden

floor

reported in Brain Diffuser [13], where floc-faces and floc-words regions showed
similar category-specific responses.

4 Conclusion

Our work introduces a compute-efficient two-stage training framework that inte-
grates contrastive learning with text embeddings to generate accurate captions
from fMRI signals. Additionally, our approach enables multimodal retrieval,
demonstrating that contrastive training effectively aligns neural activity with
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Vision-Language model representations, leading to improved performance. Fur-
thermore, our ROI-optimal stimuli analysis improves interpretability by identi-
fying the contributions of specific brain regions in the decoding process.

Future work will focus on cross-subject decoding to improve generalizability
and explore multimodal generation to further enhance the applicability of our
approach.
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