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Abstract. For the early diagnosis of Alzheimer’s disease (AD), it is
essential that we have effective multiclass classification methods that
can distinct subjects with mild cognitive impairment (MCI) from cog-
nitively normal (CN) subjects and AD patients. However, significant
overlaps of biomarker distributions among these groups make this a
difficult task. In this work, we propose a novel framework for multi-
modal, multiclass AD diagnosis that can integrate information from di-
verse and complex modalities to resolve ambiguity among the disease
groups and hence enhance classification performances. More specifically,
our approach integrates T1-weighted MRI, tau PET, fiber orientation
distribution (FOD) from diffusion MRI (AMRI), and Montreal Cognitive
Assessment (MoCA) scores to classify subjects into AD, MCI, and CN
groups. We introduce a Swin-FOD model to extract order-balanced fea-
tures from FOD and use contrastive learning to align MRI and PET fea-
tures. These aligned features and MoCA scores are then processed with a
Tabular Prior-data Fitted In-context Learning (TabPFN) method, which
selects model parameters based on the alignment between input data and
prior data during pre-training, eliminating the need for additional train-
ing or fine-tuning. Evaluated on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset (n = 1147), our model achieved a diagnosis
accuracy of 73.21%, outperforming all comparison models (n = 10). We
also performed Shapley analysis and quantitatively evaluated the essen-
tial contributions of each modality.
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Feature alignment.

1 Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that ad-
vances from cognitively normal (CN) to mild cognitive impairment (MCT) before
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reaching AD [1]. With no effective treatment available, automated multiclass di-
agnosis holds the potential of early detection of the MCI status, which is crucial
for delaying or preventing disease progression. However, significant overlap in
biomarker values and imaging characteristics between MCI, CN, and AD makes
accurate diagnosis challenging. The integration of multimodal data can poten-
tially enhance multiclass AD diagnosis by leveraging complementary clinical and
imaging information [1,2], but it is still a challenging task to effectively align
features from complex and diverse modalities.

Various multimodal data analysis methods have been developed for both im-
age and tabular data. In image analysis, deep neural networks such as CoAtNet
[3], ConvNeXt [4], MaxViT [5], SwinUNETR [6] and contrastive learning ap-
proaches [7] have shown strong performance by effectively capturing local and
global image features. These models have been proved to be efficient in multi-
modal multiclass AD diagnosis [8]. Embedding images into tabular features can
help combine the information in images with tabular test results, and algorithms
such as AdaBoost [9], XGBoost [10], TabNet [11], AutoGluon [12], Light GBM
[13], and Tabular Prior-data Fitted Network (TabPFN) [14] have achieved state-
of-the-art results for multiclass classifications on tabular medical data.

In the context of AD diagnosis, multimodal analysis methods have proven
valuable. For instance, Ou et al. [1] integrated MRI and PET data, and Qiu
et al. [15] combined MRI data with mini-mental state examination (MMSE)
tabular data for AD diagnosis. However, the performance of these methods are
still limited on multiclass classification (~ 60% accuracy for 3-class diagnosis).
To further enhance multicalss AD diagnosis, it is essential to incorporate more
diverse and complex imaging modalities together with tabulated information
from clinical evaluations. However, if not handled effectively, the misalignment
of data from heterogeneous modalities can obscure modality relationships and
limit diagnostic accuracy [16,17].

To address the challenges in the alignment and fusion of data from hetero-
geneous and complex modalities, we propose here a novel framework for mul-
timodal and multiclass AD diagnosis. Our framework integrates scalar images
(T1-weighted MRI (T1w MRI), tau PET), high-dimensional fiber orientation dis-
tribution (FOD) from diffusion MRI, and tabular data (age, sex, Montreal Cog-
nitive Assessment (MoCA) scores). First, we developed a SWIN-FOD model to
process the complex 4D FODs efficiently. For fusing MRI and PET, we adapted
the ALBEF model to handle 3D volumes. To capture relationships between
features, we employed the pretrained priors in TabPFN, avoiding the need for
additional feature alignment. Tested on the ADNI dataset (n = 1147), our model
achieved 73.21% accuracy, surpassing all comparison methods. Additionally, we
analyzed the impact of each modality on the final diagnosis by Shapley analysis.

2 Method

Fig. 1 shows the workflow of the proposed framework. We will introduce each
part of the method in detail in the following sections.
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Fig. 1. Overview of the proposed framework. The Swin-FOD model and contrastive
learning model are first trained separately. Their extracted features are then concate-
nated with tabular data, and in-context learning is applied to generate the diagnosis.

2.1 Swin-FOD

Our first alignment balances FOD information across different orders. Following
Ref. [18], FODs are represented using spherical harmonics (SPHARM) up to a
maximum order L (L = 0,2,4,...), forming complex 4D images. The number of
3D images at order [ is (2{+1), totaling (L+1)(L+2)/2. Lower-order FODs carry
low-frequency information with higher signal-to-noise ratios and fewer volumes,
while high-order FODs capture finer brain connectivity details.

To efficiently process both low- and high-order FODs while reducing memory
consumption in transformer-based models [19], we propose an order-balanced
Swin encoder |6, 20], Swin-FOD, as shown in Fig. 2a. FOD volumes are grouped
by order and embedded using a ResNet-based module [21], ensuring uniform
latent representations across orders. These features are concatenated and passed
through the Swin encoder to extract multi-resolution features.

To enhance information flow, we introduce long-range skip connections and
use a convolution block to align feature sizes at each resolution. Finally, a mul-
tilayer perceptron (MLP) generates 1D tabular features.

Swin-FOD is trained by minimizing cross-entropy loss (Lropeis) for three-
class AD diagnosis to extract features that closely related with AD diagnosis, as
LroDeis = —% Zfil Zi:l Yi.c10g(i.c), where g; . is the predicted probability
of data 7 for class ¢, y; . is the ground truth diagnosis.

2.2 Fusing T1lw MRI and Tau PET by Contrastive Learning

Inspired by the ALBEF model [7], we propose a contrastive learning-based
method to align PET and T1lw MRI data after a pre-process of image regis-
tration and tau PET Standardized Uptake Value Ratio (SUVR) calculation,
generating a fused 1D tabular representation (Fig. 2b).
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Fig. 2. (a) Flowchart of the Swin-FOD model. (b) Contrastive learning-based data
fusion between T1-weighted MRI and Tau PET.
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Our model has two alignment stages. The first stage minimizes the MRI-PET
contrastive loss L,,pc, reducing distances between MRI and PET embeddings.
MRI and PET data are embedded using separate encoders, with deeper layers
for MRI due to its complexity [7]. The loss function is:

Lpe = (Larzp + Lpan)/2 (1)
where Lyop (MRI to PET loss) is:

Larop = Ejup H(y}™", 5770), (2)
with E is the average function, H() is the cross entropy, y;w 2P is the ground
truth similarity (1 for same case, 0 otherwise). 8™%" = (e - egt) /7 is the

predicted similarity between normalized MRI ey,,; and PET e;et. 7 = 0.07 is
the temperature parameter controlling similarity sharpness.

The second stage generates fused features by minimizing masked image mod-
eling loss (Lmim) and MRI-PET matching loss (Lmpm). Lmim measures the
cross-entropy loss of the recovered 15% randomly masked PET patches. Since
PET is strongly associated with AD, this guides MRI features toward relevant
features in AD diagnosis. Ly,pm ensures that features from different subjects
remain distinguishable by preserving discriminative information:

Emim = EjND H(yja i);nask)7 Empm = IEjND H(yz‘tma i’z‘tm) (3)
where y; and y;-tm are the ground truth, and ﬁ;"“k and i)j-tm is the predicted
probability. The full loss function is:

L= Empc + ‘Cmim + Empm- (4)

To stabilize training under noisy data, we use a momentum encoder that
maintains a slowly updated copy of the feature extractor, following Ref. [7]. This
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Fig. 3. Flowchart of AD diagnosis using TabPFN: (a) Prior selection and model infer-
ence for real-world data. (b) TabPFN layer structure.

provides more consistent pseudo-targets for learning and improves convergence.
We add KL-divergence regularization to each term of the loss L:

Lpew = (1 —a)L+ aE;p KL(g,l[D;), (5)

where g; is the pseudo-target generated by the momentum model, p; is the
model’s prediction, and « = 0.4, following the settings in Ref. [7].

2.3 Prior-data Fitted In-context Learning

Features extracted from images along with tabular data, including age, sex,
and MoCA scores varies from each other in value and distribution, including
continuous values (image features), binary values (sex), and categorical values
(MoCA scores). To better measure the correlation between each feature and each
data sample, we employed the pre-trained TabPFN model [14]. Inference using
the TabPFN does not require training or fine tuning, only an alignment between
our data and the prior data in pre-training is needed, as shown in Fig. 3a.
TabPFN is pre-trained on ~ 100 million synthetic datasets generated via
structural causal models, capturing real-world tabular data characteristics. The
model consists of 12 x 2D TabPFN layers (Fig. 3b), which use two 1D attentions
to extract both within-sample and cross-sample correlations [22]. TabPFN selects
the prior model whose training data aligns with our inputs best. Given features
F(X,y), TabPFEN finds the optimal prior P* by minimizing divergence S:

P = argrrlgnS(F,R). (6)

We then use Bayesian posterior prediction to estimate 35 for new input Xyeg
using the selected prior, computing a weighted average of predictions from dif-
ferent task hypotheses [23]:

P(ytest|Xtest7F) = /P(ytest|Xtest7t)P(t|F) ~ /P(ytest|Xtestat)P(t‘P*)a (7)
t t
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Table 1. Diagnosis results of the proposed method on the test set.

Group|Number|Acc. 1|AUC 1|F1 1 |Prec. 1|Recall 1|{MCC 1| Confusion matrix
CN  |243 0.8310(0.8038 |0.8601 209 (34 |0
MCI 143 0.7321]0.8625 [0.5959(0.5838 |0.6084 |0.5299 (49 87 7
AD 62 0.6336(0.8205 [0.5161 2 28 32

where t denotes the function mapping inputs X to outputs y under a given prior
distribution P. Finally, an MLP is used to generate the AD diagnosis.

3 Results

Our model is trained and tested using the ADNI [24, 25] dataset (n = 1147),
which contains 643 CN, 345 MCI, and 159 AD cases. The dataset includes 597
female (72.92 £ 7.68 years) and 550 male (75.44 + 7.27 years) subjects. We ran-
domly split the data into 60% training, 20% validation, and 20% test sets, en-
suring the same training, validation and test sets across all models to prevent
data leakage. As TabPFN does not require training, we test it on the validation
and test sets. To address class imbalance, we oversampled MCI and AD cases in
the training set. Data from the same case are aligned to the same space before
using. All models were trained and tested on NVIDIA A5000 GPU workstations.

Our model is evaluated using mean Accuracy (Acc.), Area Under the Curve
(AUC), mean F1 score, mean Precision (Prec.), mean Recall, and Matthews
Correlation Coefficient (MCC). To interpret feature contributions, we employ
SHapley Additive exPlanations (SHAP) [26,27], which quantify the impact of
individual features on the model’s predictions.

3.1 Comparison between Different Methods

Table 1 presents the classification results of the proposed method. Our model
achieved a high diagnostic performance with an accuracy of 0.73 and an AUC of
0.86. The MCC of 0.5299 indicates a strong correlation between the predicted
diagnosis and the ground truth.

Table 2 presents a comparison between the proposed method and other ap-
proaches. We first evaluated our model using volumetric images only (MRI, PET,
and FOD), on comparison with existing image-based classification models [28]
which have demonstrated effectiveness in multimodal multiclass AD diagnosis
[8]. All models are trained, validated and tested using the same data as our
method. Next, we compared our results with other models that are efficient in
tabular data analysis, using the features generated by our models. Our model
outperforms all comparison methods. Although CoAtNet [3] and ConvNeXt [4]
achieve higher recall when using image features, their lower precision indicates
an increased false positive rate.
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Table 2. Comparison of different methods based on classification metrics. Bold: best
value, underline: second best value.

T1|PET|FOD|Tab.|Method Acc. T |AUC 1 |F1 1 |Prec. T|Recall 1|MCC 1
v |V v ResNet[21] 0.5381 [0.5912 |0.4373 |0.4732 |0.4656 [0.2127
v |V v MaxViT[5] 0.5391 (0.6217 |0.4471 |0.4626 |0.4351 |0.2216
v IV oW CoAtNet[3] 0.5348 [0.6234 [0.4483 |0.3888 [0.5328 [0.2078
v |V v ConvNeXt[4] ]0.5165 |0.6216 [0.4225 [0.3622 |0.5413 |0.1916
v v SwinUNETR|6](0.5429 [0.6379 [0.4575 [0.4321 [0.4634 |0.2165
v |V v Proposed 0.6138|0.6889|0.4789|0.5761|0.4717 |0.2841
v Iv |V |V |AdaBoost|9] 0.7054 |0.7584 [0.6402 |0.6954 [0.6190 [0.4850
vV v v |V |XGBoost[10] |0.7143 |0.8317 |0.6676 [0.6913 [0.6596 [0.4991
v |V v V" |TabNet[11] 0.6295 (0.7215 |0.5697 |0.5677 |0.5830 |0.3607
v Iv |V |V |AutoGluon[12] {0.6942 |0.8367 |0.6441 |0.6703 |0.6280 |0.4608
v v v |V |LightGBMJ[13] |0.7076 |0.8338 |0.6701 |0.6834 [0.6610 [0.4893
v |V v v' |Proposed 0.7321|0.8625|0.6868|0.7361|0.6615 |0.5299

Table 3. Comparison of ablation studies based on classification metrics.

T1 |PET|FOD|Tab.|Acc. 1 |AUC 1 |F1 1 |Prec. 1|Recall 1{MCC 1
v W 0.5915 |0.7039 [0.5094 |0.5270 [0.5015 [0.2733

v 0.5535 [0.5545 |0.3560 |0.4248 |0.3822 |0.1408

v v 0.6138 [0.6889 |0.4789 [0.5761 |0.4717 |0.2841
v’ 10.6786 |0.8402 |0.5852 |0.6603 |0.5633 |0.4224

v v/ 10.7031 |0.8446 |0.6174 |0.7097 |0.5902 |0.4670

v ol v |0.7120 ]0.8548 |0.6689 [0.6946 |0.6532 |0.5023
v v v/ ]0.7321|0.8625|0.6868|0.7361|0.6615 |0.5299

3.2 Ablation Studies

Table 3 presents the results of the ablation studies. The model using multimodal
features outperforms each single modality, with the inclusion of image features
yielding more accurate diagnoses than using only MoCA scores. The best per-
formance across all metrics is achieved by combining all modalities.

Table 4 analyzed the contrastive learning method. Specifically, we evaluated
the performance of alignment at each stage by comparing features before and
after the merging encoder E5 in Fig. 2b, named as “not fused” and “fused”,
respectively. Alignment using £,,,. improves diagnosis accuracy of both MRI and
PET data. However, directly concatenating the features results in performance
between that of the single modalities. After the two-stage aliment, the accuracy
exceeds that of each single modality’s aligned features, demonstrating that the
second stage effectively fuses information from MRI and PET.

Table 4 also compares the classification metrics between the original Swin-
UNETR and Swin-FOD. The addition of the order balance embedder and long-
range skip connections both contribute to improved performance.
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Table 4. Ablation studies of contrastive learning and Swin-FOD.

T1 [PET|FOD|Method Acc. T |AUC 1|F1 1+ |Prec. 1 |Recall 1| MCC 1t
v ResNet Encoder [0.5044 |0.5564 [0.3513 |0.3839 [0.3672 [0.0593
v ResNet Encoder [0.5446 |0.6798 [0.4598 |0.4750 [0.4657 [0.1769
v Contr. (not fused)|0.5250 [0.6111 |0.3871 |0.4090 |0.3914 |0.1277
v Contr. (not fused)|0.5708 {0.7027 {0.4951 |0.5142 |0.4859 |0.2392
v |V Contr. (not fused)|0.5468 [0.6616 |0.4570 |0.4852 |0.4483 |0.2035
v I Contr. (fused) 0.5915|0.7039(0.5094|0.5270|0.5015 |0.2733
v SwinUNETR 0.5000 ]0.5282 {0.3279 |0.3341 [0.3667 [0.0964
v + Order balance |0.5326 [0.5504 |{0.3419 [0.3659 {0.3919 |0.1205
v Swin-FOD 0.5535(0.5545(0.3560|0.4248|0.3822 |0.1408
a CN Group b MCI Group c AD Group v
V MOCA_SUM: —rmotartit- sgaiwsspofifgnn  V MOCA_SUM --antiitdiiripio-wrispogposibiPn - <~ v MOCA_SUM - ot e e igh
v DELW2 PR S v DELW2 ey v DELW2 oo -
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v REPEAT2 o TL+PET3L el v DELW4 4
H Sex e Sex L FOD2 — 2
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Fig. 4. Top 15 features with the highest impact on diagnosis for CN (a), MCI (b), and
AD (c) groups. Features marked with a tick have a high impact across all three groups.

3.3 Impact of Features

Fig. 4 shows the top 15 features with the highest mean absolute SHAP values [26,
27] contributing to the diagnosis of each group. Eight features have high impact
in all three groups (marked with a tick). The MoCA score has the highest impact
across all groups. More features from MRI and PET data than FOD data are
among the top 15 features.

Table 5 shows the total mean absolute SHAP values for each modality. Our
model extracts the most information for the CN group, followed by the MCI
group, then for the AD group. The tabular data (including age, sex and MoCA
scores) has the greatest impact, with MRI and PET features providing additional
information. Although the total impact of FOD is less than 10%, its inclusion
still improves model performance, as shown in Table 3. While FOD contributes
less to AD diagnosis, its information remains beneficial.

4 Conclusion

We propose a framework for multiclass AD diagnosis by integrating multimodal
data. Our approach includes a Swin-FOD model for extracting order-balanced
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Table 5. Comparison of SHAP scores for each modality across each group.

Modality

CN / Percentage

MCI / Percentage

AD / Percentage

Tabular data
Tiw MRI4Tau PET
FOD

0.4185 / 59.90%
0.2307 / 33.02%
0.0495 / 7.08%

0.2861 / 53.70%
0.1946 / 36.53%
0.0521 / 9.77%

0.2605 / 52.83%
0.2038 / 41.34%
0.0288 / 5.83%

All

0.6987 / 100.00%

0.5328 / 100.00%

0.4930 / 100.00%

FOD features, a contrastive learning model for aligning MRI and PET images,
and a pre-trained TabPFN model for tabular data analysis. The model achieved
73.21% accuracy in classifying CN, MCI, and AD groups, outperforming all
comparison methods. Additionally, we performed SHAP analysis to assess the
contribution of each modality to the final diagnosis. Our code is available at:
https://github.com/huangshuo343/multimodal AD.

Future work will explore additional imaging modalities, extend analysis to
multi-site [29-31] and multi-tracer datasets to enhance model robustness, in-
tegrate all modalities within one contrastive learning framework, analyze the
contribution of each component, and make comparison with more methods.
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